Physics-Informed Machine Learning

(Coming soon… :wink:)

Related Publications

  1. A.-R. Mezidi, J. Patracone, S. Salzo, A. Habrard, M. Pontil, R. Emonet and M. Sebban,
    A Bregman Proximal Viewpoint on Neural Operators,
    International Conference on Machine Learning (ICML), 2025.
  2. B. Gao, J. Patracone, O. Alata, and S. Chrétien,
    Apprentissage incrémental de l'opérateur de Koopman pour systèmes non-autonomes via prédiction conforme,
    Preprint, 2025.
  3. S. Chrétien, B. Gao, J. Patracone, and O. Alata,
    Using Signatures and Koopman operators to learn non-linear dynamics,
    Preprint, 2025.
  4. A.-R. Mezidi, R. Emonet, J. Patracone, A. Habrard, S. Salzo and M. Sebban,
    A Bilevel Optimization Framework for Training Bregman Neural Operators,
    Workshop - Fondements Mathématiques de l'IA, 2024.
  5. A.-R. Mezidi, R. Emonet, J. Patracone, A. Habrard, S. Salzo and M. Sebban,
    Bregman Neural Operators for Predicting Fluid Dynamics,
    Workshop - Machine Learning for Fluid Dynamics, 2024.
  6. A.-R. Mezidi, R. Emonet, J. Patracone, A. Habrard, M. Pontil, S. Salzo and M. Sebban,
    Bregman Fourier Neural Operators,
    Conférence sur l'Apprentissage Automatique (CAp), 2024.
  7. B. Girault, R. Emonet, A. Habrard, J. Patracone and M. Sebban,
    Approximation Error of Sobolev Regular Functions with tanh Neural Networks - Theoretical Impact on PINNs,
    European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2024.
  8. B. Girault, R. Emonet, A. Habrard, J. Patracone and M. Sebban,
    Erreur d’approximation pour les fonctions Sobolev regulières avec des réseaux de reurones tanh - impact théorique sur les PINNs,
    Conférence sur l'Apprentissage Automatique (CAp), 2024.

Back