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Abstract
We present several advances on neural operators
by viewing the action of operator layers as the
minimizers of Bregman regularized optimization
problems over Banach function spaces. The pro-
posed framework allows interpreting the activa-
tion operators as Bregman proximity operators
from dual to primal space. This novel viewpoint
is general enough to recover classical neural op-
erators as well as a new variant, coined Bregman
neural operators, which includes the inverse acti-
vation operator and features the same expressivity
of standard neural operators. Numerical experi-
ments support the added benefits of the Bregman
variant of Fourier neural operators for training
deeper and more accurate models.

1. Introduction
Neural operators (Kovachki et al., 2021; 2023), a recent
extension of neural networks, have emerged as a versatile
framework for learning mappings between function spaces.
These operators have shown great potential in solving par-
tial differential equations (PDEs) and simulating complex
dynamical systems. The exploration of neural architectures
for the approximation and learning of operators has led to
the development of a variety of models.
One influential contribution is the Fourier Neural Opera-
tor (FNO) (Li et al., 2021a), sketched in Figure 1, which
transforms encoded input data into frequency components
in order to learn intricate relationships in the frequency
domain. More recently, the Group-Equivariant FNO (G-
FNO) (Helwig et al., 2023) additionally leverages symme-
tries to design equivariant Fourier layers, thereby enhancing
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the representation power and robustness of the architec-
ture. To better scale the depth of neural operators, the F-
FNO (Tran et al., 2023) proposed separable spectral layers
and improved residual connections, along with a bag of
training tricks. The FNO are extended to Wavelet Neural
Operators (WNO) (Tripura & Chakraborty, 2023) by re-
placing Fourier layers with wavelet layers to further exploit
multiscale information. The U-shaped Neural Operator (U-
NO) (Rahman et al., 2023) adapts the U-net architecture for
neural operators, enabling mapping between function spaces
through integral operators, thus broadening the applicabil-
ity of neural architectures to diverse domains. Differently,
the DeepONet architecture (Lu et al., 2021) comprises two
intertwined components: a branch network responsible for
encoding discrete input function spaces, and a trunk net-
work dedicated to encoding the domain of output functions.
Operating as a conditional model, DeepONet leverages the
embedding of inputs and outputs via a dot product operation,
facilitating the approximation of complex functions through
a structured network topology. Finally, Neural Inverse Oper-
ators (NIO) (Molinaro et al., 2023) tackle inverse problems
by combining DeepONet and FNO architectures to map
operators to functions, thereby extending the applicability
of neural operators to coefficient estimation tasks.

Some approaches inspired by attention mechanisms, pivotal
in image and natural language processing, have also been
considered in operator learning. LOCA (Learning Opera-
tors with Coupled Attention) (Kissas et al., 2022) facilitates
robust gradient estimation, particularly in scenarios with
limited training data, by combining attention with kernel
mechanisms. The General Neural Operator Transformer
(GNOT) (Hao et al., 2023) is a scalable framework based
self-attention mechanisms allowing to deal with heteroge-
neous inputs useful for modeling diverse physical systems.

Some physics-informed variants integrating information
from PDEs during the learning process have been proposed
enhancing model interpretability and generalization: PI-
DeepONet (Wang et al., 2021) and its Long-Time Inte-
gration variant (LTI-PI-DeepONet) (Wang & Perdikaris,
2023), PINO (Physics-Informed Neural Operator) (Li et al.,
2021b) a hybrid extension of FNO, or other variations such
as V-DeepONet (Goswami et al., 2022) and Modified Deep-
ONet (Wang et al., 2022).

1



A Bregman Proximal Viewpoint on Neural Operators
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Figure 1: Illustration of the t-th layer of Fourier Neural
Operators. The upper branch applies a linear transformation
Rt to the Fourier modes using the Fourier transform F
and its inverse F−1. The lower branch performs an affine
transformation in the latent space.

Contributions. Unlike previous works (Kovachki et al.,
2021), which directly consider the compositional form of
neural operators, our approach introduces a distinct per-
spective by formulating the action of each operator layer as
the minimizer of a regularized optimization problem over
functions. This optimization connects the current hidden
representation to the next, with the choice of a regulariza-
tion implicitly defining the activation operator through the
lens of the Bregman proximity operator. Our framework
not only covers existing neural operators but also introduces
a novel variant, termed Bregman neural operator, which
demonstrates improved predictive performance as its depth
increases. Its applicability is grounded by universal ap-
proximation results proven for sigmoidal-type activation
operators. Beyond its unifying aspect and its ability to de-
sign novel neural operators, the proposed framework allows
applying the extensive body of literature on proximal numer-
ical optimization, of which Bregman proximity operators
belong to, in order to study neural operators. This opens
the way to extend the analysis done on neural networks to
(Bregman) neural operators in the same spirit of Combettes
& Pesquet (2020a;b).
Outline. The paper is organized as follows: Section 2 is
dedicated to the presentation of definitions and background
knowledge on neural operators and Bregman proximity op-
erator. In Section 3, we introduce the operator layers as
the solution of a functional optimization problem. In ad-
dition, we show that this new mapping allows recovering
the classical neural operators and creating a more general
family of so-called Bregman neural operators. In Section 4,
we provide a preliminary universal approximation result for
Bregman neural operators. Finally, in Section 5, we conduct
an experimental study comparing on benchmark datasets
our Bregman variant with the different FNO improvements.

2. Background and Definitions
Here, we introduce some definitions required for the under-
standing of the rest of the paper as well as the necessary
background on neural operators and Bregman proximity
operator. We will use basic concepts from convex analysis
such as subdifferential, Γ0 space and Fenchel conjugate,
whose definitions are recalled in Appendix A.

vt Kac
t (vt)

Wtvt + bt

σ⊕

(a) Neural Operator.

vt Kac
t (vt)

Ktvt + bt

σ−1

σ⊕

(b) Bregman Neural Operator.

Figure 2: Illustration of the t-th layer of (Bregman) Neural
Operators. On the left, the identity term and the linear term
Ktvt + bt have been merged into (I +Kt)vt =Wtvt. For
both, Kac

t represents any absolutely continuous operator.

2.1. Operator Learning

Operator learning finds significant applications in the con-
text of PDEs in order to efficiently approximate solutions
to PDEs without the need to solve them repeatedly from
scratch (Li et al., 2021b; Serrano et al., 2023; Raonic et al.,
2023). Given a nonempty bounded open set D ⊂ Rd, and
some time horizon τ > 0, we consider the generic family
of PDEs over D × [0, τ ] of the form

Fa

(
(∂αu(x, t))α∈Nd+1,|α|≤k

)
= f(x, t) on D × ]0, τ ] ,

and

{
u(x, 0) = u0(x) on D,
u(x, t) = ub(x, t) on ∂D × ]0, τ ] ,

(1)
where Fa is a (possibly) nonlinear partial differential opera-
tor, f a source term, ub a boundary condition, u0 an initial
condition, and u : D → Rn the PDE solution.
The main problem we will tackle in our numerical section
is the initial value problem. This involves finding the oracle
mapping G from any initial condition function u0 to the so-
lution u(·, τ̄) of the PDE at a certain time horizon τ̄ ∈]0, τ ].
More generally, the oracle operator G could be a mapping be-
tween two different function spaces A and U . Without loss
of generality, given some bounded open sets D ⊂ Rd, with
d ∈ N+, we let A = A(D,Rn) and U = U(D,Rk), with
n, k ∈ N+, be some separable Banach spaces of functions.
For instance, A can represent the spaces of continuous func-
tions from D → Rn. Hereafter, A and U will be referred to
as the spaces of input functions and output functions, respec-
tively. In a nutshell, operator learning consists in finding the
unknown ground-truth correspondence operator G : A → U
given N ∈ N+ pairs of input-output functions {ai, ui}Ni=1.

2.2. Neural Operators

Among the existing models to approximate G, we focus on
neural operators, which are parametric mappings N : A →
U of the form

(∀a ∈ A), N (a) = Q ◦ LT ◦ . . . ◦ L1 ◦ P(a), (2)

where

• P : A(D,Rn) → A(D,Rn0) is a local lifting operator
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mapping the input function to its first hidden representa-
tion;

• Q : U(D,RnT ) → U(D,Rk) is a local projection opera-
tor mapping the last hidden representation to the output
function;

• For every t ∈ {1, . . . , T}, Lt : Vt−1(Dt,Rnt−1) →
Vt(Dt,Rnt) is an operator layer where each Dt ⊂ Rdt

is an open bounded set, Vt = Vt(Dt,Rnt) is a suitable
Banach space of functions such that V0 = A(D,Rn0)
and VT = U(D,RnT ), for consistency.

• Each component of the neural operator (2) depends on a fi-
nite dimensional parameter. Collectively those parameters
constitute a vector θ ∈ Θ ⊂ Rp.

Most methodological developments in neural operators have
focused on tailoring the operator layers L1, . . . ,LT to spe-
cific application. Traditionally, their design mirrors stan-
dard neural networks, replacing finite-dimensional linear
layers with integral linear operators in function spaces and
interpreting activation functions as Nemytskii operators that
apply nonlinear transformations pointwise. When the input
spaces Dt are the same throughout the layers and equals D,
a popular class of operator layers, sketched in Figure 2a, is
of the form

Lt(vt) = σ(Wtvt +Kac
t (vt) + bt), (3)

where Wt ∈ Rnt×nt−1 is a matrix, bt ∈ Rnt is a bias
vector and σ is a local nonlinear map acting pointwise
from Rnt to Rnt . Moreover, we have a non-local linear
operator Kac

t : L2(D,Rnt−1) → L2(D,Rnt). In its sim-
plest version, Kac

t is an integral kernel operator of the form
(Kac

t (v))(x) =
∫
D
kt(x, y)v(y)dy, for all x ∈ D, with

kt being a kernel to be specified (Kovachki et al., 2023).
Specific examples include those based upon a convolution
performed in the Fourier space (Li et al., 2021a; Kovachki
et al., 2021), a graph kernel network (Anandkumar et al.,
2020) or its multipole variant (Li et al., 2020) to name a few.
Hereafter, we follow a different path and propose to interpret
operator layers from the viewpoint of a proximal optimiza-
tion by seeing the parametric form of (3) as the minimizer
of a Bregman regularized optimization problem. This novel
perspective allows us to propose a novel architecture, dis-
played in Figure 2b, of the form

Lt(vt) = σ(σ−1(vt) +Ktvt +Kac
t (vt) + bt), (4)

involving an additional nonlinear term σ−1(vt), and where
Kt ∈ Rnt×nt−1 is a matrix. In this formulation, when all
the weights are zero, then Lt is the identity operator. In prac-
tice, we observe that this property allows training deeper and
more accurate models. A similar architecture was originally
proposed in Frecon et al. (2022) in the finite dimensional
setting. Extending this work to neural architectures acting
on Banach function spaces requires addressing non-trivial
mathematical challenges. These include defining operator

layers rigorously, particularly the proper formulation of Leg-
endre functions on function spaces, the associated Bregman
divergence, and the Bregman proximity operator. In the next
section, we formalize these notions, laying the groundwork
for the proposed novel perspective on neural operators. The
reader interested in the technical details is invited to refer to
Appendix A.

2.3. Bregman Proximity Operator

At the core of our framework is the link between activation
operators and Bregman proximity operators. The definition
of the Bregman proximity operator hinges on a Bregman
divergence, often referred to as a distance, which is derived
from a Legendre function (see, e.g., Rockafellar (1970)).
Definition 2.1 (Legendre function). A function ϕ : Rn →
]−∞,+∞] is called Legendre if it is proper convex lower
semicontinuous and satisfies the following properties: i)
int(domϕ) = dom ∂ϕ and ∂ϕ is single-valued on its do-
main; ii) ϕ is strictly convex on int(domϕ).

In the finite dimensional setting, Legendre functions ϕ
are typically built from an elementary Legendre function
φ : R →] − ∞,+∞] as ϕ : x ∈ Rn →

∑n
i=1 φ(xi).

Since here we stand in an infinite dimensional setting, i.e.,
Lebesgue function space, the counterpart of the previous
finite sum structure is a convex integral functional defined
below (see Fact 2 in Appendix for a more rigorous treat-
ment). Also, we will allow vector valued functions.
Fact 1. LetD ⊂ Rd be a bounded set and set the dual spaces
V = Lp(D,Rn) and V∗ = Lq(D,Rn) appropriately paired.
Given a Legendre function ϕ, then

Φ(v) =

∫
D

ϕ(v(x))dx (5)

defines a convex integral functional, with its subdifferential
∂Φ consisting of functions v for which v(x) lies within the
interior of ϕ’s domain and ∇ϕ◦v ∈ V∗. The subdifferential
is single-valued, and ∇ϕ ◦ v, will be denoted by ∇̃Φ(v),
suggesting it will serve as a kind of gradient of Φ at v.

The integral functional Φ in (5) inherits certain properties
of ϕ, such as p-uniform convexity — an extension of strong
convexity when p = 2. This characteristic, proven in Propo-
sition A.3, is key to the mathematical soundness of our
analysis (see also Remarks A.2 and A.4).
We are now equipped to define Bregman distances in
Lebesgue spaces. First introduced by Bregman in (Bregman,
1967), Bregman divergence extends the notion of distance
beyond metric spaces, capturing asymmetries and curvature
induced by convex functions. Unlike Euclidean distance, it
reflects the local geometry of the function defining it, mak-
ing them valuable in optimization and variational analysis.
Definition 2.2 (Bregman distance in Lebesgue spaces). Un-
der the notations of Fact 1, the Bregman distance with re-
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spect to Φ reads, (∀u ∈ V,∀v ∈ V),

DΦ(u, v)=

{
Φ(u)−Φ(v)−⟨u−v, ∇̃Φ(v)⟩ if v∈dom ∂Φ

+∞ otherwise.

Finally, we can define the Bregman proximity operator
(Nguyen, 2017), which extends the (Euclidean) proxim-
ity operator, widely used in optimization. The Euclidean
proximity operator itself generalizes projections by replac-
ing the indicator function of a convex set with appropriate
convex functions. For additional details, the reader can refer
to Bauschke & Combettes (2017).

Definition 2.3 (Bregman proximity operator). Let V =
Lp(D,Rn) with p ∈ [1,+∞[. Let g ∈ Γ0(V) and let
Φ ∈ Γ0(V) be defined as in Fact 1, with ϕ ∈ Γ0(Rn) be
Legendre and such that ran ∂(Φ + g) = V∗. Then the
Bregman proximity operator of g relative to Φ is defined as

proxΦg : V∗ → V, v∗ 7→ argmin
{
⟨ · ,−v∗⟩+Φ+ g

}
.

Note that proxΦg is well-defined since Φ+ g is strictly con-
vex, lower semicontinuous and ran ∂(Φ + g) = V∗, and it
holds proxΦg = [∂(Φ + g)]−1.

3. Revisiting Neural Operators
In Section 3.1, we propose a novel Bregman proximal view-
point on operator layers. Then, we establish several con-
nections. First, we show in Section 3.2 that the proposed
framework is general enough to recover most classical oper-
ator layers when the Legendre function ϕ is the Euclidean
distance. Second, we show in Section 3.3 how it yields a
new variant of neural operators when ϕ defines a general
Bregman divergence. Finally, we apply our framework to
Fourier neural operators in Section 3.4.

3.1. Bregman Proximal Viewpoint on Operator Layers

Departing from usual kernel-based points of view (Kovachki
et al., 2021), we suggest defining operator layers as the
solution of functional optimization problems. For every
t = 1, · · · , T , Lt : Vt−1 → Vt,

Lt(v)= argmin
w∈Vt

−⟨w,Kt(v)+bt⟩+gt(w)+DΦt(w,Mtv)

=proxΦt
gt

(
∇̃Φt(Mtv) +Kt(v) + bt

)
,

(6)
where

• Φt : Vt → ]−∞,+∞] is a convex integral functional on
an appropriate Lebesgue space based on some Legendre
function ϕt ∈ Γ0(Rnt), as defined in Fact 1. DΦt

: Vt ×
Vt → [0,+∞] is the corresponding Bregman distance as
detailed in Definition 2.2

• Mt : Vt−1 → Vt is a bounded linear operator which maps
dom ∂Φt−1 into dom ∂Φt,

• bt ∈ V∗
t and Kt : Vt−1 → V∗

t is a bounded linear operator
of the form

Kt(v)(x) =

∫
Dt−1

κt(x, dy)v(y),

with κt : Dt ×B(Dt−1) → Rnt×nt−1 a (transition) ker-
nel fromDt−1 toDt, meaning a function which is measur-
able with respect to the first variable and a finite measure
with respect to the second variable.

• gt ∈ Γ0(Vt) and ran(∂Φt + ∂gt) = V∗
t .

Equation (6) is highly general, featuring an outer opera-
tion (the proxΦt

gt ) and an inner operation (the ∇̃Φt), and
can formally represent various layer architectures sketched
in Figure 3. A key step in establishing this connection
involves relating the proximity operator to activation oper-
ators. There are multiple ways to achieve this by varying
the choice of the pair (Φt, gt). In the following sections,
we explore two specific choices for this pair, demonstrating
how (6) recovers classical neural operators (3) (where ∇̃Φt

is the identity) and introduces a novel architecture (4), in
which ∇̃Φt acts as the inverse activation operator.
Remark 3.1 (Form of linear operator Kt). Often in applica-
tions, the kernel of the linear operator Kt is split into two
terms: an absolutely continuous part and a single pure point
part, i.e., κt = κact + κpt , where, for every x ∈ Dt, and
measurable set A ⊂ Dt−1,

κact (x,A) =

∫
A

kt(x, y)dy and κpt (A) = Ktδφt(x)(A)

with kt : Dt × Dt−1 → Rnt×nt−1 , Kt ∈ Rnt×nt−1 ,
φt : Dt → Dt−1 measurable, and δφt(x) the delta Dirac
at φt(x) ∈ Dt−1. Thus, we have

Kt(v)(x) = Kac
t (v)(x) +Kp

t (v)(x)

=

∫
Dt−1

kt(x, y)v(y)dy +Ktv(φt(x)).

Remark 3.2 (Special case of identical domains). The linear
operator Mt should be chosen so that it maps dom ∂Φt−1

to dom ∂Φt. However, in (6), if the function ϕt does not
depend on t and all the domains Dt are the same, then it
is also true that the convex integral functional Φt does not
depend on t either. Then, we have dom ∂Φt−1 = dom ∂Φt

and for the linear operator Mt we are allowed to choose the
identity operator.
Remark 3.3 (Link with convex optimization). When Vt−1 =
Vt and Mt is the identity, the operator layer (6) reads

proxΦt
gt (∇̃Φt(v)−Btv) = (∂Φt + ∂gt)

−1(∇̃Φt −Bt)(v),

where Bt : Vt → V∗
t . This is a Bregman forward-backward

operator, which is well-known in the context of operator
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Lt−1 Lt Lt+1L1P LT Q
vt ∈ Vt−1 vt+1 ∈ Vt

vt Kac
t (vt)

Ktvt + bt

Mt ∇̃Φt

proxΦt
gt⊕

⇔
vt+1 = Lt(vt) = argminw∈Vt

{
− ⟨w,Kac

t (vt) +Ktvt︸ ︷︷ ︸
=Kt(vt)

+bt⟩+ gt(w) +DΦt(w,Mtvt)
}

Figure 3: Illustration of the Bregman proximal viewpoint on operator layers. The action of each operator layer is viewed
as the minimizer of the regularized optimization problem where each term in the objective can be linked to a part of the
architecture, as evidenced by the color code.

splitting methods in optimization (Nguyen, 2017; Bùi &
Combettes, 2021).

Concluding this section, we stress that as long as the couple
(Φt, gt) admits a closed form Bregman proximity operator,
this would define additional new types of operator layers. In
Nguyen (2017), the author shows a number of examples (at
the end of Section 2, from Example 2.9 to Example 2.12)
of such couples that yield an explicit Bregman proximity
operator. Actually, one may consider layers of type

v 7→ σ2(σ
−1
1 (v) +Kt(v) + bt),

with σ1 being strictly monotone and σ2 monotone, serving
as activation operators appropriately coupled. Classical and
Bregman neural operators emerge as special cases, where i)
σ1 = Id and σ2 is any monotone function, for the former,
and ii) σ1 = σ2 is strictly monotone, for the latter. Note that
having σ1 = σ2 implies that the numerical implementation
does not require to have an explicit form of σ−1

1 , as later
discussed in Remark 3.7.

3.2. Classical Neural Operators

Our first result, stated in the proposition below, unifies a
broad class of classical neural operator layers through the
prism of the optimization viewpoint of (6) when DΦt

is the
Euclidean distance.

Proposition 3.4 (Unifying classical neural operators). Let
Vt = L2(Dt,Rnt) be some Hilbert function space and
Ψt(v) =

∫
Dt

∑nt

i=1 ψ(vi(x))dx, where ψ ∈ Γ0(R) is a
strongly convex Legendre function. Consider the Euclidean
distance defined from the elementary Legendre function
ϕt = (1/2)| · |2 ∈ Γ0(Rnt) (see Section 2.3) and set gt =
Ψt − (1/2)∥ · ∥2. Then gt ∈ Γ0(Vt) and Lt defined in (6)
acts between L2 spaces as follows

Lt(v) = prox
1
2∥·∥

2

Ψt− 1
2∥·∥

2

(
Mtv +Kt(v) + bt

)
= ∇Ψ∗

t (Mtv +Kt(v) + bt),
(7)

Table 1: Legendre function ψ and its related activation ψ∗′.

domψ ψ(t) ψ′(t) ψ∗′(t)

[−1, 1] −
√
1− t2 t/

√
1− t2 ISRU

[0, 1] t log t+ (1− t) log(1− t) log t
1−t

Sigmoid
[−1, 1] log(1− t2) + t arctanh(t) arctanh tanh

[−1, 1]
√
1− t2 + t arcsin(t) arcsin sin

R>0
1
β2Li2(e

−βt) + t2

2
log(eβt−1)

β
SoftPlusβ

where ∇Ψ∗
t = (ψ∗)′( · ) matches a variety of monotone

activation operators σ. In addition, when the domains are
all the same, sayDt = D, Mt = I , and the linear operator
Kt = Kac

t + Kp
t is as given in Remark 3.1, then Lt(v) =

∇Ψ∗
t ((I +Kt)v + Kac

t (v) + bt), where (I +Kt) can be
written as Wt. A schematic representation is reported in
Figure 2a.

In essence, Proposition 3.4 shows that the parametric struc-
ture of operator layers can be interpreted via the Bregman
proximal operator, when the Bregman distance reduces to
the Euclidean distance. The crucial aspect in establish-
ing this connection is the observation that the Euclidean
proximity operator of gt = Ψ − (1/2)∥ · ∥2 simplifies to
∇Ψ∗ = (ψ∗)′( · ), aligning with a broad spectrum of acti-
vation operators given an appropriate selection of ψ. We
report in Table 1 the corresponding ψ to retrieve several
well-known activation operators. A proof concerning the
characterization of the SoftPlus is included in the appendix.
To the best of our knowledge, ∇Ψ∗

t can only match mono-
tonic activation operators, which notably discards GeLu and
swish. To be more precise, Proposition 3.4 is general enough
to deal with the broad class of activation functions that can
be viewed as a proximity operators, which essentially boils
down to any increasing 1-Lipschitzian function (see Propo-
sition 2.3 in Combettes & Pesquet (2020a)). While this
connection has been previously noted in the neural network
literature (Combettes & Pesquet, 2020a; Frecon et al., 2022),
our work extends this analysis to function spaces.
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3.3. Bregman Neural Operators

We now provide the counterpart of Proposition 3.4 for gen-
eral Bregman distance.

Proposition 3.5 (Designing Bregman neural operators). Let
Vt = Lp(Dt,Rnt) be some Lebesgue function space and
Ψt(v) =

∫
Dt

∑nt

i=1 ψ(vi(x))dx, where ψ ∈ Γ0(R) is a p-
uniformly convex Legendre function (̸= | · |2/2). Consider
the Bregman distance in function space defined from the
elementary Legendre function ϕt(w) =

∑nt

i=1 ψ(wi) (see
Section 2.3) and set gt = 0. Then Lp defined in (6) acts
between Lp spaces as follows

Lt(v) = proxΨt
0

(
∇̃Ψt(Mtv) +Kt(v) + bt

)
= ∇Ψ∗

t (∇̃Ψt(Mtv) +Kt(v) + bt),
(8)

where ∇Ψ∗
t = (ψ∗)′( · ) matches a variety of monotone

activation operators σ. In addition, when the domains are
all the same, say Dt = D and the linear operator Kt is of
the form given in Remark 3.1, then we can take Mt = I
and

Lt(v) = ∇Ψ∗
t (∇̃Ψt(v) +Ktv +Kac

t (v) + bt). (9)

Concerning the operators ∇Ψ∗
t = (ψ∗)′( · ) and ∇Ψ∗

t =
ψ′( · ), we stress that any of the ψ listed in Table 1 are
appropriate choices. Since (ψ∗)′( · ) and ψ′( · ) are inverse
of each other, the layer of (9) boils down to

Lt(v) = σ(σ−1(vt) +Ktv +Kac
t (v) + bt), (10)

where any invertible and monotone activation operator is al-
lowed. Its schematic representation is reported in Figure 2b.
This novel variant, called Bregman Neural Operator sim-
ply differs from classical neural operators by the additional
term involving the inverse activation operator. Finally, we
note that the form of (9) corresponds to a mirror descent
step (Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003)
with mirror map ∇̃Ψt.
Remark 3.6. When Kt, Kac

t and bt are zeros and Mt is the
identity, then Lt reduces to the identity.
Remark 3.7. Concerning (10), we should ensure to feed
the first layer with functions in domL1 as discussed in
Remark A.5. This condition is for instance satisfied if
(Pv)(v) = ∇ψ∗

1(Pv(x)) = σ(Pv(x)). Note that in such
situation, the inverse activation function does not need to
have an explicit form. Indeed, when composing the different
layers in (10), the inner inverse activation function will be
cancelled out by the outer one.

3.4. Case of Fourier Neural Operators

We study the implications of the proposed viewpoint in the
peculiar case of Hilbert function spaces with equal input

and output spaces, i.e., Vt = V∗
t = L2(D,Rn) for every

t ∈ {1, . . . , T}.

A popularly encountered scenario in practice is that where
D = Td is the unit torus and the kernel associated to the
absolutely continuous part of Kt is translation invariant,
i.e., kt(x, y) = kt(x − y), thus indicating a convolution
structure. Fourier operator layers (Li et al., 2021a) are then
devised by leveraging the convolution theorem, stating that
the action of Kac

t can be written as a linear operator in the
Fourier domain:

Kac
t (v)(x)=

∫
D

kt(x− y)v(y)dy = F−1(Rt · F(v))(x),

with F : L2(Td,Rn) → ℓ2(Zd,Rn) being the Fourier trans-
form, F−1 its inverse, and Rt ∈ ℓ2(Z2,Rn×n). Often,
Rt does not range in the entire ℓ2(Z2,Rn×n) space but is
parametrized by a finite parameter (Kovachki et al., 2023).
It follows that the Bregman variant of Fourier operator layer
reads Lt(v) = σ(σ−1(v) +Wtv + F−1(Rt · F(v)) + bt).
The classical Fourier neural operator layer is retrieved by
omitting the σ−1(v) term.

In this section, we addressed FNOs because they are widely
used and simplify the analysis. In this respect, we note
that we just specified the action of Kac

t by expressing it via
direct and inverse Fourier series. So, in the end, it is only
about finding efficient parametrizations, in some ℓp space,
of linear integral operators between Lebesgue spaces. This
has been achieved by using the Fourier transform, but in
principle other transformations could be considered, pro-
vided we have an unconditional basis of the Lebesgue space
of functions and an efficient way to compute the coefficients.
For instance, the wavelet transform can be incorporated in
Proposition 1 and Proposition 2 to retrieve WNOs (Tripura
& Chakraborty, 2023) and their novel Bregman variant, re-
spectively. In a nutshell, our framework is transparent to the
parametrization of Kac

t .

4. Expressivity of Bregman neural operators
In this section, we give a preliminary positive result con-
cerning the universal approximation properties of Bregman
neural operators.

In the following, the activation function σ : R → I is re-
quired to be a homeomorphism between R and an open
interval I of R and of sigmoidal type, meaning that
limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1. Moreover,
we assume that A and U are as follows

A(D,Rn)=


C(D,Rn)

Lp(D,Rn)

Wm,p(D,Rn)

,U(D,Rk)=

{
C(D,Rk)

Lp(D,Rk)
,

where C is the space of continuous functions and Wm,p is
the Lp-type Sobolev space with m ∈ N+ derivatives for
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Figure 4: ℓ2 relative errors across different number of layers
for 2D Navier Stokes (ν = 10−4).

p ∈ [1,+∞[. Here, D denotes the closure of D, and must
be considered in PDE applications to evaluate functions on
the domain’s boundary.

Theorem 4.1. Let σ, A and U be set as above. Let G : A →
U be a continuous operator. Then for any compact set
K ⊂ A and ε > 0 there exists a Bregman neural operator
Nθ : A → U of the type (2) such that each component
depends on a finite dimensional Bregman neural network
and

sup
u∈K

∥G(u)−Nθ(u)∥U ≤ ε.

Here θ ∈ Rp collects all the (finite number of) parameters
of the finite dimensional Bregman neural networks defining
the components in (2).

Proof. The proof is reported in Appendix B and partly re-
lies on also proving this same result for Bregman neural
networks in finite dimensional spaces.

5. Numerical Experiments
The primary objective of our numerical experiments is to
evaluate and assess the added benefits of the Bregman vari-
ant of the simplest neural operator, namely Fourier Neural
Operator (FNO), and its improvements, as they often serve
as the building blocks for more sophisticated models.

5.1. Experimental Setting

Datasets. We have selected a range of benchmark datasets
resulting from the resolution of PDEs used both in the orig-
inal FNO paper (Li et al., 2021a) and in the PDEBench
suite (Takamoto et al., 2022), which is the top leading repos-
itory providing datasets commonly studied in physics-based
machine learning. They represent various dynamics and
complexities pertinent to physical modeling tasks. Here-
after, we consider initial value problems where the goal is
to learn the mapping between the initial condition ai and
the solution at some future time ui from n = 104 pairs
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Figure 5: Models’ weight density distribution.

{ai, ui}ni=1. The only exception is the 2D Darcy problem
(marked with * in latter results), where the goal is to predict
the steady-state solution from the viscosity function over
the domain. A description of the experimental settings and
the learning procedure is provided in Appendix C.

Models. We consider four models: the standard FNO (Li
et al., 2021a), our Bregman variant (BFNO) described in
Section 3.4, the Factorized FNO (F-FNO) (Tran et al.,
2023), and a ResNet-inspired variant (ResFNO) that isolates
the impact of residual connections by adopting the update
v 7→ v+σ(Kt(v)+ bt), which should not be confused with
Chen et al. (2021). Details can be found in Appendix C.6.
Additional models such as WNO (Tripura & Chakraborty,
2023) and its Bregman variant are studied in the appendix.
The lifting and projection layers, namely P and Q in (2), are
convolutional layers with kernel size 1 and width 128. Note
that, for BFNO, we add an activation operator after P to
ensure that the conditions of Remark 3.7 are met. Following
the code of Li et al. (2021a), we use the ReLU activation
for FNO while, for BFNO, we resort to an invertible ap-
proximation: SoftPlus with parameter β = 103 to make it
almost indistinguishible from ReLU. Hereafter, we consider
models made of T ∈ {4, 8, 16, 32, 64} Fourier layers with a
width 64 (resp. 32) and 16 (resp. 12) maximum number of
Fourier modes for 1D (resp. 2D) problems. Note that two
ablation studies in Appendices D.4 and D.5 reveal marginal
improvements from adding batch normalization layers or
replacing SoftPlus with ReLU.

5.2. Results and Analysis

Impact of the number of layers T . We investigate how
increasing the number of operator layers T affects perfor-
mance using the 2D Navier-Stokes dataset with viscosity
ν = 10−4, chosen for its complexity, that typically favor
deeper models to capture fine-grained structures and long-
range dependencies. Results in Figure 4 show that BFNO
systematically achieves lower prediction error regardless of
T . In contrast, FNO (resp. ResFNO) degrades from T = 8
(resp. T = 16) onward, while F-FNO (resp. BFNO) im-
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Figure 6: Comparison of ℓ2 test relative errors across dif-
ferent models, with cross-validated number of layers in
{4, 8, 16, 32} and learning rates, on PDE benchmarks.

proves with depth until plateauing at T = 16 (resp. T = 64).
The earlier saturation of F-FNO suggests that while residual
connections help with depth, BFNO scales more effectively.
Similar conclusions hold for other datasets and our Bregman
variant of WNO, as illustrated in Appendix D.2. Neverthe-
less for simpler tasks, when smaller models are sufficient,
the benefits of depth become less pronounced as expected.
We believe that the added term in BFNO stabilizes learning
by allowing its layers to reduce to identity when all weights
are zero (see Remark 3.6). However, the same argument
could be used for residual architectures (ResFNO and F-
FNO). To gain further insights, we next examine the weight
distributions.

Comparison of weight density distribution. Figure 5 illus-
trates the learned weight distributions of the operator layers
for the best-performing models considered above. ResFNO,
F-FNO, and FNO exhibit Gaussian-like distributions, with
F-FNO showing an additional peak at 0. In contrast, BFNO
has a sharply peaked distribution around 0, resembling a
Laplace distribution. While BFNO, ResFNO, and F-FNO
layers reduce to the identity when all weights are zero, only
BFNO exhibits a distinct clustering of weights around zero.
This suggests implicit regularization, enhancing general-
ization and stability by preventing large deviations from
the identity mapping. Additionally, the weight distribution
in BFNO alleviates issues such as vanishing or exploding
gradients, which are common in deeper architectures.

Extensive comparison on multiple datasets. We now eval-
uate the models on diverse datasets of varying complexity.
For each dataset, splitting realization, and model, we cross-
validate the optimal number of layers T ∈ {4, 8, 16, 32}
and report the average test error over multiple realizations
in Figure 6. Results show that BFNO consistently achieves
superior or comparable performance, with notable gains on
moderately to highly complex datasets such as 1D Burgers
and 2D Navier-Stokes (ν = 10−4). The only exception is
that of 2D Darcy, where the task differs: instead of learn-

ing a solution map from initial conditions, the goal is to
map the spatial viscosity function to the steady-state solu-
tion. In this case, it seems that the additional MLP layers
added at the end of the operator layers of F-FNO help to
better capture the complex dependencies of the viscosity-to-
solution mapping. To complement the analysis, following
Takamoto et al. (2022), we include a comparison between
BFNO and FNO over several metrics measuring the rela-
tive errors in low, mid and high frequency bands in Ap-
pendix D.3. BFNO consistently outperforms FNO in the
low and mid-frequency bands, indicating improved recon-
struction of dominant modes. However, its performance
in the high-frequency range varies: for simpler datasets,
BFNO achieves substantial error reductions, whereas for
more complex cases, the improvements are marginal. Pre-
diction examples are reported in Appendix D.1.

Additional insights. We highlight that BFNO can also be
viewed from the ODE point of view through a change of
variables. More precisely, let us consider updates of the
form vt+1 = σ(σ−1(vt) +Ktvt). Then, for zt = σ−1(vt),
it follows that zt+1 = zt + Ktσ(zt) which can be seen
as a discretization of dz(t)

dt = K(t)σ(z(t)). In contrast, a
residual-based architecture of the form vt+1 = vt+σ(Ktvt),
such as ResFNO and, to some extent also F-FNO, would
lead to the following ODE dv(t)

dt = σ(K(t)v(t)) on v it-
self. The fact that, in BFNO, the linear operator is placed
outside the activation function can be seen as a different
way of mitigating vanishing gradients compared to residual
architectures like ResFNO and F-FNO.

6. Conclusion
In summary, our contributions are twofold: we have pro-
vided a new theoretical framework that broadens the under-
standing of neural operators through the lens of a Bregman
regularized optimization problem, and we have introduced
Bregman neural operators that achieve enhanced perfor-
mance as their depth increases. As part of our theoreti-
cal advancements, we have also established universal ap-
proximation results for Bregman neural architectures with
sigmoidal-type activation functions. However, it must be
acknowledged that a gap exists between this result and com-
mon practices, which predominantly rely on ReLU-like acti-
vations, as in our work, opening the door to new theoretical
developments. Beyond the unifying aspect of our frame-
work and its ability to design novel neural architectures, our
setting also paves the way to use the rich body of literature
on monotone operators to study neural operators. In the con-
text of neural networks, an example of fruitful application
of the latter is given in Combettes & Pesquet (2020a) where
the authors provide interesting asymptotic properties on the
networks (as the number of layers tends to infinity). One
can also consider the work in Combettes & Pesquet (2020b)
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where the authors yield quantitative insights into the stabil-
ity properties of neural networks. As for our setting, we
can guess that such results might be extended to Bregman
neural networks/operators by leveraging the notion of so
called D-firm operators studied in Bauschke et al. (2003),
meaning operators that are firmly nonexpansive with respect
to a Bregman divergence.
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A. Additional Technical Facts
We begin by introducing the necessary notations used throughout the paper.

Notations. Let V and V∗ be two Banach spaces put in duality via the pairing ⟨·, ·⟩ : V × V∗ → R. If Φ: V → ]−∞,+∞],
we denote by domΦ = {v ∈ V |Φ(v) < +∞} its effective domain. For every proper convex function Φ: V → ]−∞,+∞],
we set its subdifferential

∂Φ(v) = {v∗ ∈ V∗ | for all u ∈ V, Φ(u) ≥ Φ(v) + ⟨u− v, v∗⟩},

if v ∈ domΦ, and ∂Φ(v) = ∅, otherwise. We set dom ∂Φ = {v ∈ domΦ | ∂Φ(v) ̸= ∅} and the range ran ∂Φ = {v∗ ∈
V∗ | ∃v ∈ V s.t. v∗ ∈ ∂Φ(v)}. When ∂Φ(v) is a singleton, we denote by ∇̃Φ its unique element. If Φ: V → ]−∞,+∞],
its Fenchel conjugate is the function Φ∗ : V∗ → ]−∞,+∞] such that Φ∗(v∗) = supv∈V⟨v, v∗⟩ − Φ(v). We denote by
Γ0(V) the set of proper convex and lower-semicontinuous functions on V . The Fenchel-Moreau theorem ensures that
Φ ∈ Γ0(V) ⇒ Φ∗ ∈ Γ0(V∗). We denote by ⟨ · , · ⟩ and | · | the Euclidean scalar product and norm in Rn. If D ⊂ Rd is
a nonempty bounded Borel set and p ∈ [1,+∞], we denote by Lp(D,Rn) the Lebesgue space of p-integrable functions
(essentially bounded functions, if p = +∞) from D to Rn.

A.1. Considerations for Legendre Function and Bregman Proximal Operators

At the core of our framework, lies the connection between activation operators and Bregman proximity operators whose
definition involves the Bregman divergence itself defined from a Legendre function Φ ∈ Γ0(V). The latter acts on Lebesgue
function space V = LP (D,Rn) and can be built from an elementary legendre function ϕ ∈ Γ0(Rn) through the convex
integral functional described in Fact 1. We provide below several considerations.
Remark A.1. One can prove that ϕ is Legendre if and only if ϕ∗ is Legendre. Moreover, if ϕ is Legendre, then ϕ and ϕ∗ are
differentiable on int(domϕ) and int(domϕ∗) respectively and

∇ϕ : int(domϕ) → int(domϕ∗) and ∇ϕ∗ : int(domϕ∗) → int(domϕ)

are bijective and inverse of each other.
Fact 2 (Convex integral functionals on Lebesgue spaces based on Legendre function). Let D ⊂ Rd be an open-bounded set.
Let p, q ∈ [1,+∞] be conjugate exponents, that is such that 1/p+1/q = 1, and set V := Lp(D,Rn) and V∗ = Lq(D,Rn).
The spaces V and V∗ can put in duality via the pairing V × V∗ → R, (v, u) 7→ ⟨v, u⟩ =

∫
D
⟨v(x), u(x)⟩dx. Let

ϕ ∈ Γ0(Rn) be a Legendre function and let Φ: V → ]−∞,+∞] be such that

Φ(v) =

∫
D

ϕ(v(x))dx. (11)

Then Φ ∈ Γ0(V), dom ∂Φ = {v ∈ V | for a.e. x ∈ D, v(x) ∈ int(domϕ) and (∇ϕ) ◦ v ∈ V∗}, ∂Φ is single valued on
dom ∂Φ, and, for every v ∈ dom ∂Φ, ∂Φ(v) = {∇ϕ ◦ v}. The unique element ∇ϕ ◦ v of ∂Φ(v) will be denoted by ∇̃Φ(v),
suggesting it will serve as a kind of gradient of Φ at v1.
Remark A.2. In Fact 2, suppose that p = 1 and domϕ∗ = Rn. Then ran ∂Φ = V∗. Indeed, we note that
∇ϕ : int(domϕ) → Rn is a continuous bijection with inverse ∇ϕ∗, which is also continuous. Therefore if we let
u ∈ V∗ = L∞(D,Rn) and set v = (∇ϕ∗) ◦ u, since u is essentially bounded, we have that v is essentially bounded too,
and hence integrable. In the end v ∈ L1(D,Rn) and u = (∇ϕ) ◦ v ∈ ∂Φ(v).

Definition 2.3 of Bregman proximity operators in general Banach spaces requires that ran ∂(Φ + g) is the full dual space.
The following result gives a simple situation in which such condition is satisfied.
Proposition A.3. Let ϕ ∈ Γ0(Rn) be a Legendre function, let p ∈ [1,+∞[, and suppose that ϕ is p-uniformly convex with
constant c > 0, meaning that

∀ y, y′ ∈ Rn,∀λ ∈ ]0, 1[ : ϕ((1− λ)y + λy′) + λ(1− λ)
c

p
|y − y′|p ≤ (1− λ)ϕ(y) + λϕ(y′). (12)

Let V = Lp(D,Rn). Then the integral functional Φ: V → ]−∞,+∞] defined as in Fact 1 is p-uniformly convex with
respect to the norm ∥ · ∥p. Moreover, for every g ∈ Γ0(V) such that domΦ∩ dom g ̸= ∅, we have dom(Φ+ g)∗ = V∗ and
(Φ + g)∗ is Fréchet differentiable on V∗. Thus V∗ = dom ∂(Φ + g) = ran ∂(Φ + g).

1Note that in general the domain of the function Φ has empty interior, so Gâteaux and/or Frechet differential cannot be properly
defined.
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Proof. It follows by integrating (12). The second part follows by Zalinescu (2002, Theorem 3.5.10), considering that Φ+ g
is also p-uniformly continuous.

We now provide conditions ensuring that the Bregman proximity operator is well-defined by guaranteeing that the subdiffer-
ential covers the entire dual space. This is important because having full range means that every possible dual variable has a
corresponding primal solution.
Remark A.4.

(i) If V = Lp(D,Rn) with p ∈ ]1,+∞[, the condition ran ∂(Φ + g) = V∗ is satisfied if ϕ is p-uniformly convex (see
Proposition A.3 in the appendix). Moreover, by Remark A.2, if p = 1 and domϕ∗ = Rn, then ran ∂Φ = V∗.

(ii) If instead of ran ∂(Φ+g) = V∗, one asks the stronger condition ran(∂Φ+∂g) = V∗, then we have ∂(Φ+g) = ∂Φ+∂g
and the Bregman proximity operator writes down as proxΦg = (∂Φ+ ∂g)−1 and ran(proxΦg ) ⊂ dom ∂Φ.

Finally, we apply these results to an iterative process, specifically the compositional form of (Bregman) neural operators, to
ensure well-posedness at each step. By confirming that the proximity operator consistently maps to the correct domain,
we establish a stable recursive structure. This prevents domain mismatches and ensures the validity of compositions.
Additionally, we emphasize the importance of a compatibility condition on the lifting operator, which guarantees a
well-defined initialization for the iterative scheme.
Remark A.5. In view of Remark A.4(ii), the condition ran(∂Φt + ∂gt) = V∗

t implies that proxΦt
gt = (∂Φt + ∂gt)

−1 and
hence ran(proxΦt

gt ) ⊂ dom ∂Φt. In this way domLt = M−1
t (dom ∂Φt−1) and ran(Lt) ⊂ dom ∂Φt and the composition

(2) is well-defined provided that for the lifting operator P it holds ran(P) ⊂ dom ∂Φ1 (e.g., if P(v)(x) = ∇ϕ∗1(Pv(x))).

A.2. Link Between Activation Function and Proximity Operator

As demonstrated in the work of Combettes & Pesquet (2020a), many activation functions σ can be expressed as proximity
operators proxg = argmint∈R g(t) +

1
2 (· − t)2 for some appropriate convex function g. The simplest case is that of the

ReLu activation function, recalled below.

Example 1 (ReLu). The rectified linear unit function σ : t ∈ R 7→ max(t, 0) ∈ R can be expressed as the proximity
operator proxg of g = ı[0,+∞[. Henceforth, proxg reduces to the projection onto the positive orthant.

We also provide a novel characterization of SoftPlus.

Example 2 (SoftPlus). Given β > 0, the SoftPlus activation function, i.e., σ : t 7→ SoftPlusβ(t) ≜ (1/β) log(exp(βt)+1),
is the proximity operator of

g : t ∈ R>0 7→ 1

β2
Li2(e

−βt) ∈ R>0, (13)

where Li2 is the dilogarithm function defined as Li2 : t 7→ −
∫ t

0
log(1−u)

u du.

Proof. For every s ∈ R, proxg(s) = argmint∈R{h(t) ≜ g(t) + (1/2)(s − t)2} with h(t) = (1/β2)Li2(e
−βt) +

(1/2)(s − t)2 = ψ(t) − st + (1/2)s2 where we introduced ψ(t) = (1/β2)
(
Li2(e

−βt) + (1/2) log(e−βt)2
)

=

(1/β2)
∫ e−βt

log(r/(1− r))/rdr. The latter can be written as ψ(t) = (1/β)
∫ t

log(eβr − 1)dr up to a constant. Finally,
since h is strongly convex, the minimum is attained for t such that h′(t) = 0, which yields log(eβt − 1) = βs⇔ t = σ(s),
thus ending the proof.

We present an illustration of the convex function g defined in Eq. 13 in Figure 7a. Intuitively, it serves as a smooth surrogate
for the indicator function of the positive orthant ı[0,+∞[. A larger value of β > 0 leads to a closer approximation. This
aligns with the representation of SoftPlus as the proximity operator of g from Eq. 13, depicted in Fig. 7b where a larger β
makes SoftPlus closer to ReLU.
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Figure 7: Illustration of SoftPlus as a proximity operator.

B. Approximation Results for Bregman Neural Networks and Operators
B.1. Bregman Neural Networks

We consider first shallow Bregman neural networks for finite dimensional spaces. Let σ : R → I be a homeomorphism,
where I is an open interval in R. We d ∈ N+ and set

BN2(σ; I
d) = span

{
σ(σ−1(m⊤x) + w⊤x+ b)

∣∣m ∈ ∆d−1, w ∈ Rd, b ∈ R
}
. (14)

Remark B.1. Since m belongs to the standard simplex ∆d−1, m⊤x is a convex combination of elements of I and so it is an
element of I . Thus, since σ−1 : I → R, the functions in BN2(σ; I

d) are well-defined from Id → R.

The following result follows from an adaptation of the argument in Cybenko (1989) to our different architecture (14).

Theorem B.2. Suppose that σ is sigmoidal, meaning that limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1. Then, the space
BN2(σ; I

d) is dense in C(Id,R) with respect to the topology of uniform convergence on compact sets.

Proof. Let K ⊂ Id be a compact set. We prove that the trace space BN2(σ; I
d)|K is dense in C(K,R). To that purpose, we

rely on the following general fact concerning dense sets in Banach space (see, e.g., Brezis (2011)). Let B be a Banach space,
let A ⊂ B. Then the following propositions are equivalent.

• spanA is dense in B

• A⊥ = {u∗ ∈ B∗ | ∀u ∈ A : ⟨u, u∗⟩ = 0} = {0}.

• ∀u∗ ∈ B∗, (∀u ∈ A : ⟨u, u∗⟩ = 0) ⇒ u∗ = 0.

This implies that for our purpose we can equivalently prove that

∀µ ∈ M(K) :

(
∀ f ∈ BN2(σ; I

d) :

∫
K

fµ = 0

)
⇒ µ = 0,

where M(K) is the space of signed finite Radon measures on K (the dual of C(K)). Thus, let µ be a signed measure on K
and suppose that

∀ f ∈ BN2(σ; I
d) :

∫
K

fdµ = 0. (15)

Fix w ∈ Rd,m ∈ ∆d−1, and b ∈ R. Define, for every λ > 0 and c ∈ R

σλ,c : I → R, x 7→ σ(σ−1(m⊤x) + λ(w⊤x+ b) + c).

It is clear that σλ,c ∈ BN2(σ; I
d). Moreover,

lim
λ→+∞

σλ,c(x) =

 1 if w⊤x+ b > 0
0 if w⊤x+ b < 0
σ(σ−1(m⊤x) + c) if w⊤x+ b = 0.

 := γ(x).
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Define the sets

Π+
w,b =

{
x ∈ K

∣∣w⊤x+ b > 0
}
, Π−

w,b =
{
x ∈ K

∣∣w⊤x+ b < 0
}
, Πw,b =

{
x ∈ K

∣∣w⊤x+ b = 0
}
.

They are intersections of half-spaces and hyperplanes with K. So,

γ(x) = χ
Π+

w,b

(x) + σ(σ−1(m⊤x) + c)χ
Πw,b

(x),

where χA is the characteristic functions of the set A ⊂ Id. Since σ is bounded we can apply the Lebesgue’s dominated
convergence theorem and get

lim
λ→+∞

∫
K

σλ,cdµ︸ ︷︷ ︸
=0

=

∫
K

γdµ = µ(Π+
w,b) +

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x).

Note that the integral on the left is zero by the hypothesis (15). In this way we proved that

∀m ∈ ∆d−1,∀w ∈ Rd,∀ b,∀ c ∈ R : µ(Π+
w,b) +

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x) = 0. (16)

Now observe that (16) implies∣∣∣µ(Π+
w,b)

∣∣∣ = ∣∣∣∣ ∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x)

∣∣∣∣ ≤ ∫
Πw,b

|σ(σ−1(m⊤x) + c)| d|µ|(x) → 0 as c→ −∞,

since |σ(σ−1(m⊤x) + c)| → 0 as c → −∞ (pointwise), where |µ| is the total variation of µ. Therefore, µ(Π+
w,b) = 0.

Then (16) yields

∀ c ∈ R :

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x) = 0.

Moreover, by assumption σ(σ−1(m⊤x) + c) → 1 as c → +∞ (pointwise) and hence, again by Lebesgue’s dominated
convergence theorem,

lim
c→+∞

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x)︸ ︷︷ ︸
=0

=

∫
Πw,b

1dµ = µ(Πw,b),

which yields µ(Πw,b) = 0. In the end we proved that the measure µ is zero on all the sets of type

Πw,b and Π+
w,b.

Now the proof continues as in Cybenko (1989, Lemma 1), and we can conclude that µ = 0.

Now we address the vectorial case. We set

BN2(σ; I
d,Rk) :=

{
Qσ(σ−1(Mx) +Wx+ b)

∣∣∣∣ r ∈ N+, Q ∈ Rk×r,W,M ∈ Rr×d,
with M right stochastic, and b ∈ Rr

}
,

where σ and σ−1 are applied component-wise.

Corollary B.3. We have that

BN2(σ; I
d,Rk) = (BN2(σ; I

d))k := BN2(σ; I
d)× · · · × BN2(σ; I

d)︸ ︷︷ ︸
k times

(17)

and it is dense in C(Id,Rk), in the topology of uniform convergence on compact sets.
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Proof. In view of Theorem B.2, it is clear that (BN2(σ; I
d))k is dense in C(Id,R)k ≊ C(Id,Rk) in the topology of uniform

convergence on compact sets. Let’s prove equality (17). The inclusion BN2(σ; I
d,Rk) ⊂ (BN2(σ; I

d))k is immediate. Let
f : Id → Rk with components fj ∈ BN2(σ; I

d), j = 1, . . . , k. Then, there exists r ∈ N+, and for each j ∈ {1, . . . , k},
qj ∈ Rr, Wj ∈ Rr×d, bj ∈ Rr, and Mj ∈ Rr×d right stochastic matrix (the rows are positive and sum one), such that

fj(x) = q⊤j σ(σ
−1(Mjx) +Wjx+ bj).

Then considering the block matrices

M =

M1

...
Mk

 ∈ Rkr×d, W =

W1

...
Wk

 ∈ Rkr×d, b =

b1...
bk

 ∈ Rkr, Q =


q⊤1 0 · · · 0
0 q⊤2 · · · 0
...

...
. . .

...
0 0 · · · q⊤k

 ∈ Rk×kr,

we have
f(x) = Qσ(σ−1(Mx) +Wx+ b),

and hence f ∈ BN2(σ; I
d,Rk). The statement follows.

A general deep Bregman neural network with T layers is defined as follows

BNT (σ; I
d,Rk) =

{
WT ◦ LT−1 ◦ · · · ◦ L1

}
,

where, for every t = 1, . . . , T − 1,

Lt : I
nt−1 → Int , x 7→ σ(σ−1(Mtx) +Wtx+ bt), (18)

withWt ∈ Rnt×nt−1 , bt ∈ Rnt andMt ∈ Rnt×nt−1 right stochastic, for t = 1, . . . , T−1, with n0 = n andWT ∈ Rk×nT−1 .
Note that also the dimensions n1, . . . , nT−1 can be chosen freely. Clearly for a deep network with T > 2, if we take, for
every t = 2, . . . , T − 1, nt = n1, Wt = 0, bt = 0, and Mt equals to the identity, then the layers Lt with t = 2, . . . , T − 1
act as the identity operator and hence

BN2(σ; I
d,Rk) ⊂ BNT (σ; I

d,Rk).

Therefore, BNT (σ; I
d,Rk) is dense in C(Id,Rk) for the topology of uniform convergence on compact sets.

Remark B.4. Often in applications it is desirable to have functions defined on the entire space Rd. In this case one can
simply precompose the functions in BNT (σ; I

d,Rk) by the homeomorphism

x ∈ Rd → σ(x) ∈ Id

obtaining a dense set in C(Rd,Rk) (for any T ≥ 2). Such space is then denoted by BNT (σ;Rd,Rk).

Let D ⊂ Rd be any nonempty bounded open set. If F(Rd) is any class of real functions from Rd to R we denote by F|D
the set of restrictions to D of the functions in F(Rd). In the following according to Remark B.4 we put

BNT (σ;Rd,Rk) =
{
WT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ

}
, (19)

which is a dense space in C(Rd,Rk) with respect to the topology of uniform convergence on compact sets.

Lemma B.5. Suppose that σ is a sigmoidal activation function as in Theorem B.2. Let p ∈ [1,+∞[. Then
BNT (σ;Rd,Rk)|D is dense in Lp(D,Rk) (in the norm ∥·∥p).

Proof. It is well known that Cc(D,Rk) is dense in Lp(D,Rk) and hence C(Rn,Rk)|D is dense in Lp(D,Rk) (in the norm
∥·∥p). Moreover, BNT (σ;Rn,Rk)|D is dense in C(Rd,Rk)|D (in the norm ∥·∥∞). On the other hand

∀ f ∈ C(Rd,Rk)|D : ∥f∥p =
(∫

D

|f |pdx
)1/p

≤ ∥f∥∞ |D|1/p.
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Thus, if f ∈ Lp(D,Rk) and ε > 0,

∃ g ∈ C(Rd,Rk)D s.t. ∥f − g∥p ≤ ε

2

∃h ∈ BNT (σ;Rd,Rk)|D s.t. ∥g − h∥∞ ≤ ε

2|D|1/p
⇒ ∥g − h∥p ≤ ε

2

and hence ∥f − h∥p ≤ ε.

Remark B.6. It is sometimes required that neural networks, of any depth, include constant functions. Standard feed-forward
neural networks have the form

(WT ·+bT ) ◦ σ(WT−1 · +bT−1) ◦ · · · ◦ σ(W1 · +b1),

so it is clear that they include constant functions (just take WT = 0). However, for Bregman neural networks as defined
in (19)-(18) this is not clear. An immediate modification to achieve this goal is to explicitly add a constant bT in the last
layer. Another possibility is to lift the input space by one dimension, precomposing the neural network with a (free) linear
embedding. In particular, if we consider the canonical embedding

J : Rd → Rd+1 : x 7→
[
x
0

]
,

and define the following matrices

W̃t =

[
Wt 0
0 1

]
, M̃t =

[
Mt 0
0 1

]
, b̃t =

[
bt

−σ(0)

]
, (for t<T) W̃T =

[
WT bT /σ(0)

]
,

then, for t = 1, . . . , T − 1, according to (18), we have

∀ y ∈ Int−1 : L̃t

[
y

σ(0)

]
= σ

(
σ−1

(
M̃t

[
y

σ(0)

])
+ W̃t

[
y

σ(0)

]
+ b̃t

)
=

[
Lty
σ(0)

]
and hence

W̃T ◦ L̃T−1 ◦ · · · ◦ L̃1 ◦ σ ◦ J =WT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ + bT .

B.2. Bregman Neural Operators

Now we start addressing the proof of Theorem 4.1. We will rely on the work of Kovachki et al. (2023), from which, for the
sake of reader’s convenience, we report the following facts.
Fact 3 (Lemma 28 and 30 in Kovachki et al. (2023)). Let D ⊂ Rd be a bounded set and let L ∈ (Wm,p(D))∗, for some
m ≥ 0 and 1 ≤ p < +∞, or L ∈ (C(D))∗. Then, for any closed and bounded set K ⊂ A and ε > 0, there exists a function
κ ∈ C∞

c (D) such that

sup
v∈K

∣∣∣L(v)− ∫
D

κ(x)v(x)dx
∣∣∣ < ε.

Fact 4 (Lemma 22 and 26 in Kovachki et al. (2023)). Let D ⊂ Rd be a bounded set and let A and U be any one of the
Banach spaces C(D) or Wm,p(D), with m ≥ 0 and 1 ≤ p < +∞. Let G : A → U be a continuous operator, K ⊂ A be a
compact set and ε > 0. Then there exist J, J ′ ∈ N and

R : A → RJ , f : RJ → RJ′
, S : RJ′

→ U ,

with R and S linear continuous and f continuous, such that

sup
v∈K

∥G(v)− (S ◦ f ◦R)(v)∥ < ε.

In the following we set D ⊂ Rd be a bounded set and

A(D,Rn0) =Wm,p(D,Rn0) or A(D,Rn0) = C(D,Rn0),
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where the integer m ≥ 0 and p ∈ [1,+∞[. Moreover we will assume that (by possibly changing the definition slightly)
Bregman neural networks include constant functions (recall Remark B.6). Because of the density result given in the previous
section, we can essentially follow the same line of arguments in Kovachki et al. (2023), but we need to take special care of
the different structure of Bregman neural network/operators (in particular in Lemma B.10).
Lemma B.7. Let L ∈ A∗ and K ⊂ A be a compact set. Then there exists h ∈ BN2(σ;Rd,Rn0)|D such that

sup
v∈K

∣∣∣L(v)− ∫
D

⟨h(x), v(x)⟩ dx
∣∣∣ < ε.

Proof. The space A is (isomorphic to) a product space, meaning A =
∏n0

i=1 Ai, where Ai is a space of real valued functions
on D. Set Ki = pri(K), which is a compact set of Ai, so that K ⊂

∏n0

i=1Ki. Then L : A → R can be written as
Lv =

∑n0

i=1 Livi with Li : Ai → R. By Fact 3, for every i = 1, . . . , n0, there exists κi ∈ Cc(D) such that

sup
vi∈Ki

∣∣∣Livi −
∫
D

κivi dx
∣∣∣ < ε

2n0
.

Let κ ∈ Cc(D,Rn0) with components κi ∈ Cc(D). Then∣∣∣Lv − ∫
D

⟨κ(x), v(x)⟩ dx
∣∣∣ = ∣∣∣ n0∑

i=1

Livi −
n0∑
i=1

∫
D

κivi dx
∣∣∣ ≤ n0∑

i=1

|Livi −
∫
D

κivi dx| <
ε

2
.

Since A ⊂ L1(D,Rn0) we set γ = supv∈K ∥v∥1 < +∞. Moreover, since Bregman shallow neural networks are dense in
the space of continuous functions (Remark B.4), there exists h ∈ BN2(σ;Rd,Rn0)|D such that ∥h− κ∥∞ ≤ ε/(2γ) and
hence, for every v ∈ K,∣∣∣ ∫

D

⟨κ, v⟩d x−
∫
D

⟨h, v⟩d x
∣∣∣ = ∣∣∣ ∫

D

⟨κ− h, v⟩ dx
∣∣∣ ≤ ∫

D

|κ(x)− h(x)||v(x)| d x ≤ ∥κ− h∥∞ ∥u∥1 <
ε

2
.

Therefore, ∣∣∣Lv − ∫
D

⟨h, v⟩ dx
∣∣∣ ≤ ∣∣∣Lv − ∫

D

⟨κ, v⟩ dx
∣∣∣+ ∣∣∣ ∫

D

⟨κ, v⟩ dx−
∫
D

⟨h, v⟩ dx
∣∣∣ < ε

and the statement follows.

Lemma B.8. Let R : A → RJ be a linear continuous operator, K ⊂ A a compact set and ε > 0. Then there exists a linear
continuous operator RBN : A → RJ acting as

v 7→ RBNv =

∫
D

h(y)v(y) dy,

where h ∈ BN2(σ;Rd,RJ×n0)|D, such that
sup
v∈K

|Rv −RBNv| < ε.

Proof. Consider the components Rj : A → R, j = 1, . . . , J . Then Rj ∈ A∗, and by Lemma B.7

∃hj ∈ BN2(σ;Rd,Rn0)|D s.t. sup
v∈K

∣∣∣Rjv −
∫
D

⟨hj(x), v(x)⟩ dx
∣∣∣ ≤ ε√

J
.

Let h : Rd → RJ×n0 with

h(x) =

h1(x)
⊤

...
hJ(x)

⊤

 .
Clearly h ∈ BN2(σ;Rd,RJ×n0)|D and

∀ v ∈ K :
∣∣∣Rv − ∫

D

h(x)v(x) dx
∣∣∣2 =

J∑
i=1

∣∣∣Rjv −
∫
D

⟨hj(x), v(x)⟩ dx
∣∣∣2 < ε2

and the statement follows.
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Remark B.9. Both the linear continuous operators R and RBN in Lemma B.8 can be canonically lifted to Lebesgue spaces
as follows.

R : A → Lp(D,RJ), Rv = (Rv)1D

RBN : A → Lp(D,RJ), RBNv = (RBNv)1D,

where 1D denotes the constant function x 7→ 1 on D. Moreover RBN is actually an integral operator. Indeed if we define
the kernel

κh : D ×D → RJ×n0 , κh(x, y) = h(y)

we have

(RBNv)(x) = RBNv =

∫
D

h(y)v(y) dy =

∫
D

κh(x, y)v(y) dy.

The following result is the analogue of Kovachki et al. (2023, Lemma 35) and establishes that a finite dimensional Bregman
neural network can be canonically lifted in Lebesgue spaces. However, here we need to take care of the domain of the
Bregman operator layers.

Lemma B.10. Let f ∈ BNT (σ;RJ ,RJ′
), D ⊂ Rd a nonempty open set and p ∈ [1,+∞]. Then there exists a neural

operator
NBN : Lp(D,RJ) → Lp(D,RJ′

), NBN = KT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ,

where, for every t = 1, . . . , T − 1,
Lt(v) = σ(σ−1(Mtv) +Ktv + bt)

and such that the linear integral operators Mt and Kt and the functions bt are defined (parametrized) by finite dimensional
Bregman shallow neural networks and

∀w ∈ RJ : NBN(w1D) = f(w)1D,

where 1D denotes the constant function x 7→ 1 on D.

Proof. By definition
f = KT ◦ LT−1 ◦ · · ·L1 ◦ σ, Lt(w) = σ(σ−1(Mtw) +Ktw + bt),

where σ : R → I and, for t = 1, . . . , T , Kt ∈ Rnt×nt−1 and bt ∈ Rnt , and for every t = 1, . . . , T − 1, Mt ∈ Rnt×nt−1 , is
right stochastic, n0 = J and nT = J ′. Since, we are assuming that Bregman neural networks contain constant functions
(recall the sentence before Lemma B.7), we have

• bt1D ∈ BN2(σ;Rd,Rnt)|D ⊂ C(D,Rnt)

• κt =
1

|D|
Kt1D×D ∈ BN2(σ;Rd × Rd,Rnt×nt−1)|D×D ⊂ C(D ×D,Rnt×nt−1) and

Kt : L
p(D,Rnt−1) → Lq(D,Rnt)

v 7→ (Ktv)(x) =

∫
D

κt(x, y)v(y) dy =

∫
D

1

|D|
Ktv(y) dy = Ktv̄,

where v̄ is the mean value of v. So that Ktv = (Ktv̄)1D is a constant function.

• µt =
1

|D|
Mt1D×D ∈ BN2(σ;Rd × Rd,Rnt×nt−1)|D×D ⊂ C(D ×D,Rnt×nt−1)

Mt : L
p(D,Rnt−1) → Lp(D,Rnt)

v 7→ (Mtv)(x) =

∫
D

µt(x, y)v(y) dy =

∫
D

1

|D|
Mtv(y) dy =Mtv̄.
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Moreover, since Mt is right stochastic, if the function v has range (almost everywhere) in Int−1 , we have that
v̄ ∈ Int−1 ⇒ Mtv̄ ∈ Int , Hence

Mt(dom ∂Φt−1) ⊂ dom ∂Φt.

Indeed, recall that Φt : L
p(D,Rnt) → ]−∞,+∞] and

∀ v ∈ Lp(D,Rnt) : Φt(v) =

∫
D

ϕt(v(x)) dx, ∀w ∈ Rnt : ϕt(w) =

nt∑
i=1

ψ(wi)

with ψ : R → ]−∞,+∞] Legendre, int(domψ) = I , domψ∗ = R, σ = (ψ∗)′, and σ−1 = ψ′, so that dom ∂Φt ={
v ∈ Lp(D,Rnt) | for a.e. x ∈ D, v(x) ∈ Int

}
and for v ∈ domΦt, ∂Φt(v) = {∇ϕ ◦ v}.

It follows from the previous considerations that if v ∈ dom ∂Φt−1 ⊂ Lp(D,Rnt−1), we have Kt(v) = (Ktv̄)1D and
Mtv = (Mtv̄)1D, and hence

Lt(v) = σ(σ−1(Mtv) +Ktv + bt1D)(x) = σ(σ−1(Mtv̄) +Ktv̄ + bt).

Note that here Vt = Lp(D,Rnt). Thus, we have

Lt(v) = (Ltv̄)1D,

meaning that the operator layer Lt transforms any function in Lp(D,Rnt) into a constant function, where the constant is the
mean value of the function, transformed via the standard (finite dimensional) Bregman layer Lt. In particular, if w ∈ RJ ,
we have

L1(σ(w1D)) = L1(σ(w)1D) = L1(σ(w))1D

L2(L1(σ(w1D))) = L2(L1(σ(w))1D) = L2(L1(σ(w)))1D,

and so on. Therefore, if we set
NBN = KT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ,

the statement follows.

Remark B.11. Let S : RJ′ → U(D,Rk) be linear (and continuous) and set

∀ i = 1, . . . , J ′ : sj = Sej ∈ U ,

where (ej)1≤j≤J′ is the canonical basis of RJ′
. Define the function s : D → Rk×J′

, with s(x) = [s1(x) · · · s′J(x)], which
has the sj’s as columns. Then

∀w ∈ RJ′
: Sw = S

( J′∑
j=1

wjej

)
=

J′∑
j=1

wjsj ⇒ (Sw)(x) =

J′∑
j=1

wjsj(x) = s(x)w.

Thus, the action of S can be represented by a matrix-valued function with columns in U . Moreover, the linear operator S
can be lifted to a linear integral operator from Lp(D,RJ′

) to U . Indeed if we define the kernel

κs : D ×D → Rk×J′
, κs(x, y) =

1

|D|
s(x),

for every v ∈ Lp(D,RJ′
), we have

(Sv)(x) =
∫
D

κs(x, y)v(y) dy =

∫
D

1

|D|
s(x)v(y) dy = s(x)v̄,

where v̄ is the mean value of v. In the end S : Lp(D,RJ′
) → U and

∀ v ∈ Lp(D,RJ′
) : Sv = Sv̄,

and hence, for every w ∈ RJ′
, S(w1D) = Sw, meaning that S is actually an extension of S to the Lebesgue space

Lp(D,RJ′
).
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Lemma B.12. Let S : RJ′ → U(D,Rk) be linear (and continuous). Let K ⊂ RJ′
be a compact set and ε > 0. Then there

exists a function h ∈ BN2(σ;Rd,Rk×J′
)|D so that for the corresponding linear operator SBN : RJ′ → U defined as

∀w ∈ RJ′
: (SBNw)(x) =

J′∑
i=1

wjhj(x) = h(x)w,

according to Remark B.11, we have
sup
w∈K

∥Sw − SBNw∥U < ε.

Finally we are ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. It follows from Fact 4 that there exist J, J ′ ∈ N and

R : A → RJ , f : RJ → RJ′
, S : RJ′

→ U ,

with R and S linear continuous and f continuous, such that

sup
v∈K

∥G(v)− (S ◦ f ◦R)(v)∥ < ε.

Now, taking advantage of the previous lemmas we want to replace the operators R and S with analogue operators depending
on shallow Bregman neural networks, and the function f with a Bregman neural network. It follows from Lemma B.8 that
for every n ∈ N there exist

RBN
n : A → RJ linear continuous operator such that sup

v∈K
|Rv −RBN

n v| < 1

n+ 1
,

where RBN
n depends on a Bregman shallow network hn as specified in Lemma B.8. Clearly this implies that

limn→+∞RBN
n v = Rv uniformly on K, so that the set

K1 := R(K) ∪
⋃
n∈N

RBN
n (K) ⊂ RJ

is compact (see Kovachki et al. (2023, Lemma 21)). Since f is continuous, it is uniformly continuous on K1, hence given
ε > 0 there exists δ > 0 such that

∀w,w′ ∈ K1 : |w − w′| < δ ⇒ |f(w)− f(w′)| < ε

3 ∥S∥
.

Moreover, there exists fBN ∈ BN2(σ;RJ ,RJ′
) such that

sup
w∈K1

|f(w)− fBN(w)| < ε

3 ∥S∥
.

Let’s take n ∈ N such that 1/(n+ 1) < δ. Then,

∀ v ∈ K : Rv,RBN
n v ∈ K1 and |Rv −RBN

n v| < 1

n+ 1
< δ ⇒ |f(Rv)− f(RBN

n v)| < ε

3 ∥S∥
.

Finally, since fBN(K1) is compact, by Lemma B.12, there exist SBN : RJ′ → U such that

sup
w∈fBN(K1)

∥Sw − SBNw∥U <
ε

3
.

Therefore, for every v ∈ K we have∥∥S(f(Rv))− SBN(fBN(RBN
n v))

∥∥
U ≤

∥∥S(f(Rv))− S(f(RBN
n v))

∥∥
U +

∥∥S(f(RBN
n v))− S(fBN(RBN

n v))
∥∥
U

+
∥∥S(fBN(RBN

n v))− SBN(fBN(RBN
n v))

∥∥
U

≤ ∥S∥ |f(Rv)− fBN(RBN
n v)|+ ∥S∥ |f(RBN

n v)− fBN(RBN
n v)|

+
∥∥S(fBN(RBN

n v))− SBN(fBN(RBN
n v))

∥∥
U

<
ε

3
+
ε

3
+
ε

3
= ε.
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In the end, for every v ∈ K,∥∥G(v)− SBN(fBN(RBN
n v))

∥∥
U ≤ ∥G(v)− S(f(Rv))∥U +

∥∥S(f(Rv))− SBN(fBN(RBN
n v))

∥∥
U < 2ε.

Now in order to conclude the proof, it is sufficient to lift the operators RBN and SBN to Lebesgue spaces, as described in
Remark B.9 and Remark B.11, and the function fBN to Bregman neural operator as described in Lemma B.10 and recognize
that

SBN ◦ NBN ◦ RBN
n = SBN ◦ fBN ◦RBN

n .

Indeed, for every v ∈ A, we have

SBN(NBN(RBN
n v)) = SBN(NBN((RBN

n v)1D)) = SBN(fBN((RBN
n v))1D) = SBN(fBN((RBN

n v))).

The statement follows.

C. Experimental Settings
We adopt the same experimental setting as in the PDEBench repository (Takamoto et al., 2022). For the sake of information,
we recall the considered problems and PDEs and the specific settings we consider when appropriate. The learning procedure
used is presented at the end of this section.

C.1. 1D Advection Equation

The advection equation is a linear Partial Differential Equation (PDE) modeling the transport of a fluid quantity u, namely
its velocity field, defined by the following equation:

∂tu(x, t) + β∂xu(x, t) = 0, x ∈ (0, 1), t ∈ (0, 2], (20)
u(x, 0) = u0(x), x ∈ (0, 1), (21)

with β a constant advection speed. Note that this system admits an exact solution: u(t, x) = u0(x− βt).

For this dataset, we follow the setting given in Takamoto et al. (2022), Section D.1 by taking β = 0.4. We learn the mapping
between the value of the field at t = 0 (u(x, 0)) and the value at time t = 2 (u(x, 2)), i.e. we learn the mapping between the
first and the last temporal value of each sample.

C.2. 1D Burgers Equation

The Burgers’ equation is a PDE describing the nonlinear advection and diffusion of a velocity field, defined as follows:

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν/π∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 2], (22)
u(x, 0) = u0(x), x ∈ (0, 1), (23)

where ν is the diffusion coefficient, which is assumed to be constant in this dataset.

We follow again the setup presented in Takamoto et al. (2022), section D.2, with ν = 0.001. As in the previous dataset, we
learn the mapping from the field at t = 0 as input to the field at t = 2 as target.

C.3. 1D Compressible Navier-Stokes Equations (1D NS)

The compressible Navier-Stokes equations describe the motion of viscous fluids that can change in density due to compression
or expansion. This can be described through the following partial differential equations:

∂tσ + ∂x · (σu) = 0, (24)
σ(∂tu + u · ∂xu) = −∂xp+ η△u + (ζ + η/3)∂xxu), (25)

∂t(ϵ+ σv2/2) + ∂x · [(p+ ϵ+ σv2/2)u− u · σ′] = 0, (26)

where σ is the mass density, u = u(x, t) is the fluid velocity, p is the gas pressure, ϵ is an internal energy described by the
equation of state, σ′ is the viscous stress tensor, and η and ζ are shear and bulk viscosity, respectively.
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In our experiments, we consider the setup introduced in Takamoto et al. (2022), Section D.5, fixing η = 10−8, ζ = 10−8

and out-going boundary conditions. We learn the mapping of the velocity v from time t = 10 as input to time t = 11
as target. For this dataset, we added a symmetrical padding preprocessing to replicate periodic boundary conditions (as
prescribed in the original FNO code (Li et al., 2021a)).

C.4. 2D Incompressible Navier-Stokes Equations (2D NS)

We also consider a dataset from the 2D Navier-Stokes equation for a viscous, incompressible fluid in vorticity form on the
unit torus (Li et al., 2021a) defined as follows:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, Tfinal]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, Tfinal]

w(x, 0) = w0(x), x ∈ (0, 1)2
(27)

with u is the 2D velocity field, w = ∇× u is the vorticity, w0 : (0, 1)2;→ R is the initial vorticity function, ν ∈ R+ is the
viscosity coefficient, and f : (0, 1)2 → R is the forcing function.

We follow the setup introduced in Li et al. (2021a), Section A.3.3, with ν = 10−3 and ν = 10−4. We learn the mapping of
the velocity field v from sample time t = 10 to t = 45 for ν = 10−3 and from t = 10 to t = 15 for ν = 10−4.

C.5. Darcy Flow

We consider a dataset based on the steady state of the 2D Darcy Flow equation on the unit square, representing the flow
through porous media and defined as follows:

−∇(a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2.
(28)

We follow the setup described in Takamoto et al. (2022), Section D.4, with f(x) fixed to the constant β = 0.1.

C.6. FNO Baselines

In this section, we further detail the FNO improvements considered as baselines.

F-FNO (Tran et al., 2023). The factorized FNO is a particularly relevant baseline for comparison, as it i) incorporates
skip-like connections that share similarities with our additional σ−1 term and ii) also seeks to enable the development of
deeper FNO architectures. We consider the best-performing F-FNO model (as identified by its authors), trained using our
optimization strategy and adapted to our specific learning task. It is important to note that F-FNO was originally designed
for predicting mappings between multiple consecutive time steps (e.g., from t to t+ 1) and it offers the option to rely on
techniques such as the Markov assumption and teacher forcing. Since our task involves predicting the final state directly
from the initial conditions, those techniques are not appropriate, and thus we did not include them in the implementation.
Additionally, we have found that the original optimization strategy proposed by the F-FNO authors (AdamW with cosine
annealing, noise injection and input normalization) did not perform well on our tasks, so we also employed the optimization
strategy detailed in Appendix C.6.

ResFNO. Moreover, to isolate the impact of residual connections from the broader structural modifications introduced by
F-FNO, we have also implemented and compared a ResNet-inspired variant of FNO, referred to as ResFNO. We did this to
better understand the role of the residual connection.

C.7. Learning procedure

Models are trained using the Adam optimizer with a constant learning rate, a batch size of 128 for 1D problems (resp. 16 for
2D problems), a maximum of 2000 epochs and an early stopping strategy with patience of 250 epochs and δ = 10−3. The
learning rate is validated on a grid of multiple values equally spaced in logarithmic scale. If not mentioned otherwise, we
use 8000 (resp. 1000) training samples for 1D (resp. 2D) problems, and 1000 samples each for validation and testing. All
results are averaged over four random splittings.
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Experiments have been made on an internal clusters of GPUs with memory from 10Go to 45Go. All the experiments can be
achieved with GPUs with a memory of 10Go, except for models with 32 or 64 layers which require at least a memory of
24Go.

A summary of the experimental setting along with some learning hyperparameter is detailed in Table 2.

Table 2: Experimental settings.

Dataset Number of modes Batch size Width Tinit Tfinal Train samples

1D Advection [16] 128 64 0 200 8000
1D Burgers [16] 128 64 0 200 8000
1D NS [16] 128 64 10 11 8000
2D NS (10−4) [12,12] 16 32 10 15 1000
2D NS (10−3) [12,12] 16 32 10 45 1000
2D Darcy [12,12] 16 32 - - 1000

D. Additional Results
D.1. Comparison of Predictions

In this section, we visually inspect to what extent the prediction made by FNO, ResFNO and BFNO is close to the ground
truth. We provide three examples on the Navier Stokes dataset with viscosity 10−4 where we have selected the best
performing models.

Input a Output u ûmFNO ûmResFNO ûmBFNO

(a) Predictions

Input a Output u FNO residual ResFNO residual BFNO residual

(b) Residuals

Figure 8: Predictions and residuals for Navier Stokes 10−4.

D.2. Extension to Wavelet Neural Operators

We also extended our experiments to Wavelet Neural Operators (WNO). In Table 3 is reported the comparison between
standard WNO and the Bregman version BWNO. We can observe similar results as Fourier models, where our models
outperform the standard models and are able to gain performance when increasing the number of layers. Furthermore, even
with gradient clipping, 32 and 64-layer standard models could not converge during training, leading to 100% relative error
rate. Further analysis shows that this divergence can be linked with the high error rates on low frequencies and boundary
conditions.

D.3. Detailed Analysis of the Prediction Performance

In the same spirit of Takamoto et al. (2022), we include several metrics providing a deeper understanding of the models’
behavior, including relative mean squared error on the boundary (rMSE) as well as in the low, mid, and high frequency
bands (fRMSE low, fRMSE mid, fRMSE high). Results are provided in Table 4.
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Table 3: Relative error of WNO and BWNO models on benchmark PDEs.

1D Advection 1D Burgers 1D NS
WNO BWNO WNO BWNO WNO BWNO

4 layers 3.0± 0.0% 2.8 ± 0.2% 21.5± 0.5% 21.3 ± 0.4% 59.2± 0.6% 58.3 ± 0.6%
8 layers 2.5± 0.1% 2.1 ± 0.1% 19.1± 0.6% 17.9 ± 0.6% 59.0± 0.6% 58.0 ± 0.6%
16 layers 3.9± 0.8% 2.0 ± 0.2% 19.7± 0.5% 16.4 ± 0.3% 61.1± 0.6% 57.6 ± 0.7%
32 layers 100± 0% 1.9 ± 0.1% 100± 0% 16.4 ± 0.5% 100± 0% 57.2 ± 0.6%
64 layers 100± 0% 1.8 ± 0.2% 100± 0% 16.1 ± 0.4% 100± 0% 57.5 ± 0.6%

Table 4: Additional comparison of the performance in terms of relative ℓ2 error (rMSE), relative mean squared error on the
boundary (rMSE) as well as in the low, mid and high frequency bands (fRMSE low, fRMSE mid, fRMSE high).

T = 4 T = 8 T = 16

PDE Metric BFNO FNO BFNO FNO BFNO FNO

1D
A

dv
ec

tio
n rMSE 1.55 · 10−2 2.43 · 10−2 1.45 · 10−2 3.22 · 10−2 1.43 · 10−2 4.38 · 10−2

bRMSE 9.04 · 10−2 1.21 · 10−1 8.28 · 10−2 1.51 · 10−1 7.82 · 10−2 2.43 · 10−1

fRMSE low 4.56 · 10−6 9.38 · 10−6 4.45 · 10−6 1.14 · 10−5 4.21 · 10−6 1.93 · 10−5

fRMSE mid 3.89 · 10−6 6.81 · 10−6 3.39 · 10−6 8.84 · 10−6 3.61 · 10−6 1.27 · 10−5

fRMSE high 3.15 · 10−7 4.87 · 10−7 2.89 · 10−7 5.96 · 10−7 2.76 · 10−7 8.08 · 10−7

1D
B

ur
ge

rs

rMSE 8.24 · 10−2 8.28 · 10−2 5.83 · 10−2 8.16 · 10−2 4.67 · 10−2 7.92 · 10−2

bRMSE 3.83 · 10−1 3.69 · 10−1 2.41 · 10−1 3.65 · 10−1 1.85 · 10−1 3.72 · 10−1

fRMSE low 5.18 · 10−5 4.88 · 10−5 3.01 · 10−5 4.52 · 10−5 2.37 · 10−5 4.88 · 10−5

fRMSE mid 3.41 · 10−5 3.44 · 10−5 2.52 · 10−5 3.61 · 10−5 2.01 · 10−5 3.29 · 10−5

fRMSE high 1.17 · 10−6 1.32 · 10−6 1.01 · 10−6 1.33 · 10−6 8.71 · 10−7 1.29 · 10−6

1D
N

S
(1
0
−

8
) rMSE 4.91 · 10−1 5.05 · 10−1 4.90 · 10−1 5.22 · 10−1 4.86 · 10−1 5.35 · 10−1

bRMSE 2.16 · 100 2.44 · 100 2.06 · 100 2.85 · 100 1.95 · 100 3.18 · 100

fRMSE low 2.65 · 10−4 2.78 · 10−4 2.65 · 10−4 2.86 · 10−4 2.57 · 10−4 2.91 · 10−4

fRMSE mid 2.19 · 10−4 2.26 · 10−4 2.18 · 10−4 2.34 · 10−4 2.13 · 10−4 2.43 · 10−4

fRMSE high 1.12 · 10−5 1.11 · 10−5 1.11 · 10−5 1.13 · 10−5 1.21 · 10−5 1.13 · 10−5

2D
D

ar
cy

*

rMSE 9.99 · 10−1 1.00 · 100 9.96 · 10−1 1.01 · 100 1.00 · 100 1.02 · 100

bRMSE 1.45 · 10−2 1.47 · 10−2 1.43 · 10−2 1.52 · 10−2 1.41 · 10−2 1.40 · 10−2

fRMSE low 6.41 · 10−4 6.44 · 10−4 6.35 · 10−4 6.45 · 10−4 6.37 · 10−4 6.52 · 10−4

fRMSE mid 3.29 · 10−5 3.21 · 10−5 3.23 · 10−5 3.17 · 10−5 3.15 · 10−5 3.23 · 10−5

fRMSE high 1.68 · 10−6 1.99 · 10−6 1.86 · 10−6 1.99 · 10−6 1.73 · 10−6 2.01 · 10−6

2D
N

S
(1
0
−

3
) rMSE 5.49 · 10−1 5.65 · 10−1 5.23 · 10−1 5.48 · 10−1 5.41 · 10−1 5.46 · 10−1

bRMSE 2.88 · 10−2 2.97 · 10−2 2.75 · 10−2 2.92 · 10−2 2.83 · 10−2 2.84 · 10−2

fRMSE low 5.82 · 10−4 5.98 · 10−4 5.59 · 10−4 5.76 · 10−4 5.75 · 10−4 5.70 · 10−4

fRMSE mid 1.46 · 10−4 1.41 · 10−4 1.13 · 10−4 1.27 · 10−4 1.11 · 10−4 1.07 · 10−4

fRMSE high 1.31 · 10−5 8.69 · 10−6 9.87 · 10−6 8.37 · 10−6 1.01 · 10−5 1.14 · 10−5

2D
N

S
(1
0
−

4
) rMSE 1.31 · 100 1.34 · 100 1.25 · 100 1.38 · 100 1.23 · 100 1.43 · 100

bRMSE 7.03 · 10−2 7.16 · 10−2 6.74 · 10−2 7.45 · 10−2 6.68 · 10−2 7.73 · 10−2

fRMSE low 9.54 · 10−4 1.00 · 10−3 9.42 · 10−4 9.94 · 10−4 9.22 · 10−4 1.11 · 10−3

fRMSE mid 7.34 · 10−4 7.51 · 10−4 6.93 · 10−4 7.89 · 10−4 6.83 · 10−4 7.98 · 10−4

fRMSE high 1.29 · 10−4 1.33 · 10−4 1.22 · 10−4 1.43 · 10−4 1.21 · 10−4 1.48 · 10−4

D.4. Impact of the Activation Function

A limitation of our framework is the fact that it requires Bregman variants (such as BFNO) to have a strictly monotonic
activation function, which excludes a few functions such as ReLU. This justifies why in our experiments we used Softplus
as a surrogate of ReLU. On the contrary, for classical neural operators within our framework, the activation function only
needs to be monotonic, not strictly monotonic. Therefore, ReLU is still valid and can be used.

As a thought experiment, we also implemented BFNO with ReLU and evaluated it on the 2D Navier-Stokes dataset
(ν=10−4). Table 5 shows that BFNO with ReLU achieves comparable or better performance than Softplus for the same
number of layers. However, the best results are the same (i.e., 12.2% for 16 layers).
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Architecture 4 layers 8 layers 16 layers
FNO (ReLU) 13.5 ± 0.1 13.0 ± 0.1 12.6 ± 0.1
BFNO (Softplus) 13.7 ± 0.1 12.6 ± 0.1 12.2 ± 0.1
BFNO (ReLU) 13.4 ± 0.2 12.2 ± 0.2 12.2 ± 0.1

Table 5: Comparison BFNO with Softplus or ReLU.

D.5. Impact of Batch Normalization

For all the experiments presented in the previous sections, we relied on the latest available version of the FNO implementation,
which does not include Batch Normalization (BN), while it was used in the original FNO paper (Li et al., 2021a). We note
that the original FNO code was removed from the GitHub repository by its author (i.e., the ’master’ branch was deleted).
While we retrieved an earlier version of the code, we observed that BN was implemented in the initial commit but was
subsequently removed in a later commit titled "remove unnecessary batchnorm", suggesting that adding BN layers does not
lead to better prediction performance.

To complement our results, we have conducted an experiment with BN for both FNO and BFNO architectures on the 2D
Navier-Stokes dataset (ν=10−4). Results, reported in Table 6, show marginal improvements for 8-layer models (FNO:
13.0% → 12.8%, BFNO: 12.6% → 12.4%) but no consistent benefits for other configurations. This aligns with the conclusion
of the recent FNO implementations that removed BN.

Architecture 4 layers 8 layers 16 layers
FNO 13.5 ± 0.1 13.0 ± 0.1 12.6 ± 0.1
FNO + BN 13.5 ± 0.1 12.8 ± 0.2 12.6 ± 0.1
BFNO 13.7 ± 0.1 12.6 ± 0.1 12.2 ± 0.1
BFNO + BN 13.5 ± 0.1 12.4 ± 0.0 12.3 ± 0.1

Table 6: Impact of BatchNormalization (BN) with FNO and BFNO
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