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Abstract

We introduce Conformal Online Learning of Koopman embeddings (COLoKe), a
novel framework for adaptively updating Koopman-invariant representations of non-
linear dynamical systems from streaming data. Our modeling approach combines
deep feature learning with multi-step prediction consistency in the lifted space,
where the dynamics evolve linearly. To prevent overfitting, COLoKe employs a
conformal-style mechanism that shifts the focus from evaluating the conformity of
new states to assessing the consistency of the current Koopman model. Updates
are triggered only when the current model’s prediction error exceeds a calibrated
threshold, allowing selective refinement of the Koopman operator and embedding.
Empirical results on benchmark dynamical systems demonstrate the effective-
ness of COLoKe in maintaining long-term predictive accuracy while significantly
reducing unnecessary updates.

1 Introduction

Understanding the evolution of complex systems over time is essential in numerous disciplines,
including robotics [Bruder et al.|[2021]], finance [Mann and Kutz, [2016], physics [Kaptanoglu et al.|
2020], chemistry [Klus et al.,2020] and biology [Hasnain et al., [2020]. A particularly powerful
framework for this analysis is provided by operator-theoretic approaches, which recast nonlinear
dynamics into linear evolution in function space. Among these, the Koopman operator [Budisic et al.|
2012| Mauroy et al.|[2020] plays a central role: it describes the progression of measurement functions
(or observables) defined over the state space, yielding an infinite-dimensional linear representation of
nonlinear systems. Its spectral decomposition offers a principled way to characterize the long-term
behavior and underlying structure of the dynamics [Brunton et al.| 2022].

Although the Koopman operator is infinite-dimensional, several numerical methods have been de-
veloped to approximate it in a finite-dimensional setting. Notable among these are Dynamic Mode
Decomposition (DMD) [Rowley et al.,|2009] and its nonlinear extensions, such as Extended DMD
(EDMD) [Williams et al., | 2015[] and its variants (see [Jin et al.,[2024]] and references therein). Re-
cent works have also proposed kernel learning formulations in reproducing kernel Hilbert spaces
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Table 1: Positioning of COLoKe with respect to the state-the-art.

No need Online Adaptative Built-in
for history update embedding reconstruction
ODMD [Zhang et al.;[2019] v v/ X v
R-EDMD [Sinha et al., 2019, [2023]] X v X X
DKLT [Hao et al., [2024] v batch only v X
BatchOnline[Mazouchi et al., 2023] v batch only v X
R-SSID [Loya and Tallapragada, [2024|] X batch only =~ X
OnlineAE [Liang et al., 2022 v v v X
COLoKe (ours) v v v v

(RKHS) [Kostic et al.} 2022, |[Hou et al., |2023]]. In addition, deep learning techniques have been lever-
aged to learn expressive Koopman-invariant representations, using neural networks and autoencoder
architectures to estimate significant observables [L1 et al., 2017, [Wehmeyer and Noé, [2018),|[Lusch
et al.,[2018] [Yeung et al., 2019} Otto and Rowley, 2019].

Most existing methods, however, operate in the offline setting, assuming access to the entire dataset
in advance. Yet, in many applications—such as online monitoring, adaptive control, or real-time
forecasting—data arrive sequentially and the system may evolve in a non-stationary fashion [Korda
and Mezic} 2018]]. Several online methods have been proposed for this task. For instance, Online
DMD [Zhang et al) [2019]] and Online EDMD [Sinha et al.| 2019, 2023] incrementally update
Koopman operator estimates as new data arrives. However, these methods typically rely on linear
observables or fixed dictionaries, limiting their expressiveness. More recent methods using neural
networks (e.g., [Liang et al.l 2022, |Hao et al.,|2024]]) lack principled learning strategies and often rely
on retraining the model using a fixed number of steps, regardless of whether the update is necessary.
These limitations highlight the need for online learning strategies that are not only memory-efficient
but also adaptive in order to update models only when required by the incoming data.

We address this need by introducing Conformal Online Learning of Koopman embeddings (COLoKe),
whose high-level principle is sketched in Figure[l] Our approach combines deep Koopman repre-
sentation learning with a novel repurposing of conformal prediction principles to decide when to
adapt the model as data arrive in a streaming fashion. Updates are triggered only when necessary,
reducing both computational burden and overfitting. This contributes to the growing body of work on
online Koopman learning [[Sinha et al.| 2023 |Loya and Tallapragadal 2024, Mazouchi et al., [2023]].
Our method differs by enabling adaptive embeddings, built-in reconstruction, and real-time updates
while remaining memory-efficient (see Table[I)). To the best of our knowledge, COLoKe is the first
principled approach for online learning driven by conformal-based updates.

Contributions. In summary, our contributions are: (i) We propose a novel online learning framework
that leverages conformal prediction to guide adaptive model updates; (ii) We instantiate this framework
in the context of Koopman operator learning, enabling expressive online regression of nonlinear
dynamical systems through deep data-adaptive embeddings; (iii) We provide a theoretical analysis
establishing a dynamic regret bound under mild assumptions.

Outline. The rest of the paper is organized as follows. In Section[2] we present the mathematical
background on Koopman operator theory and conformal prediction, which form the foundation of
our approach. Section [3]introduces our main method and details how a conformal-based update
strategy permits to update model parameters adaptatively in an online fashion. Section ] provides
empirical validation on a range of benchmark dynamical systems, comparing COLoKe to existing
online Koopman learning methods. Proofs and implementation details are deferred to the appendix.

2 Mathematical background

In this section, we present the two key components of our method, namely the Koopman operator
and the conformal prediction framework.



2.1 Data-driven learning of the Koopman operator

Let a measurable space (X, Xy), with X' C R4 and ¥y a Borel o-algebraon X, andletT: X —
X be a measurable, time-invariant, deterministic map. Hereafter, we consider a discrete-time
autonomous dynamical system governed by the iteration rule x;11 = T'(x;) for all ¢ € N, which
describes the evolution of the system as a sequence of states {z }+cn entirely determined by the initial
condition zy € X and the update rule T'. A classical approach to analyzing such kind of nonlinear
dynamical systems is through the Koopman operator formalism. Rather than studying the trajectories
in state space directly, the Koopman approach lifts the dynamics to an infinite-dimensional space of
observables F (e.g., L?(X, 1) for some Borel measure j1). The Koopman operator K: F — F is
defined by

(Kf)(x) = f(T(x)), VfeFVred, (1
which describes the evolution of observables along trajectories of the system. Importantly, K is a linear
operator, even when 7 is nonlinear, making it a powerful tool for the spectral analysis of nonlinear
dynamics [Brunton et al.l 2022]]. In particular, if ¢ € F is an eigenfunction of IC with eigenvalue
X € C,ie., Ko = A\p, then along a trajectory (), the observable evolves linearly: p(x;) = A (z0).
It follows that, when a set of eigenfunctions {1, ..., ¢} defines an injective embedding of the
state space, the system can be linearized via the coordinate transformation « — (¢1(z), ..., ¢r(z)).
In this lifted space, the nonlinear dynamics evolve linearly, providing a compelling framework for
Koopman-based analysis and control [Korda and Mezi¢, [2018, [Mauroy et al.| 2020].

In many real-world scenarios, the transition map 7" governing the dynamics is unknown or inaccessi-
ble, and we must instead rely on observed trajectories of the system {xt}iv:to. This shift has led to the
development of data-driven approximations of the Koopman operator IC. Motivated by the fact that
Koopman eigenfunctions evolve linearly along trajectories, one typically seeks a set of observables
{f1,.-., fm} C F that spans a subspace that is approximately invariant under the action of K. In
the ideal setting where S = span(f1, ..., f,,) is invariant under &, i.e., Kf € Sforall f € S, the
restriction of K to S admits an exact representation by a finite-dimensional matrix X € C™*™ and
the evolution of observables in this subspace is governed by the linear relation

(p(CCt_;,_l) = K(I)(It), (2)

where ®(z) = [fi(z),..., fm(x)]" denotes the lifted representation of the state. This insight
motivates the search for low-dimensional Koopman-invariant subspaces that admit such linear
representations. Methods like EDMD [Williams et al.l 2015]] approximate this setting by fixing
a dictionary {f;}™, but their performance is limited by the expressiveness and suitability of the
chosen observables. To overcome this limitation, recent approaches [Takeishi et al.| [2017| [Lusch
et al., [2018] | Yeung et al.|[2019, |Otto and Rowley, |2019] propose to learn both the feature map ¢ and
the linear operator K jointly using neural networks, leading to deep Koopman embeddings.

2.2 Conformal prediction for online data

Conformal prediction [Vovk et al.,|1999, 2005, Romano et al.l 2019} |/Angelopoulos and Bates, [2021]]
is a distribution-free framework for uncertainty quantification that constructs valid prediction sets
with finite-sample guarantees.

Given past input-output pairs {(z;, yi)}i;%, a model produces a prediction g, for a new input x;, and

assigns a conformity score s(z¢, y) to each candidate output y. The conformal prediction set is defined
as Cy = {y € V| s(xt,y) < ¢}, where ¢, is a quantile calibrated to ensure P(y;, € C;) > 1 — a.
The set C} is thus interpreted as a set of plausible outputs: it contains all candidate values of y that
are deemed sufficiently "conformal” (i.e., not too surprising) with respect to the current model and
past observations. While this framework is powerful and requires no distributional assumptions
beyond exchangeability, it is not directly applicable to time series or online learning, where data are
typically non-exchangeable. In such settings, standard conformal methods may yield miscalibrated or
overly conservative intervals. Addressing this challenge has motivated the development of adaptive
conformal approaches that can track distribution shifts over time [|Gibbs and Candes} 2021 Xu et al.|
2021} |/Angelopoulos et al., [2023b]. In particular, Conformal PID Control was recently introduced in
Angelopoulos et al.|[2023b] as a dynamically calibrated version of conformal prediction. Here, “PID”
refers to the use of Proportional, Integral, and (optionally) Derivative feedback terms—standard
components in control theory—used to adaptively adjust the prediction threshold. Rather than fixing
the quantile threshold ¢; in advance, the method updates it online in response to conformity violations.



KooPMAN EMBEDDING CONFORMITY-BASED UPDATE

Set qi+1
YES (see Eq.[3)
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o, (1) = K Do, (21—+)

T Update parameters (6;, K;)

Wait for new datum at time ¢ < ¢ + 1

Figure 1: Schematic representation of COLoKe. The model receives a rolling window of observations,
lifts them via a partially-learned feature map, computes a conformity score based on multi-step
prediction error, and updates its parameters only if the score exceeds a conformal threshold.

Among its variants, we consider the conformal PI control scheme: after observing whether y; € C4,
a binary error signal e; = 1{y; ¢ C;} is computed, and the threshold is adjusted via:

i=1

t
G1=q+ Yee—a) +r (Z(ei—@)>7 vt eN, 3

Proportional term (P) Integral term (I)

where v > 0 is a learning rate and r; # 0 is a nonlinear saturation function [[Angelopoulos et al.]
2023al] acting as an integral correction term. This PI-style control loop allows the prediction region
to adaptively expand or contract to maintain the desired coverage. Under mild regularity conditions,

. .. . T
it ensures that the empirical coverage converges, i.e., % Y€t —aasT — oo,

In this paper, we revisit conformal mechanism from a novel perspective. Rather than using conformal
PI control to build uncertainty sets for y;, we reinterpret the conformity score as a diagnostic tool for
the model itself — in particular, for deciding whether a Koopman embedding remains consistent over
time or if it needs to be updated. This reinterpretation will be developed in Section [3.2]

3 Online conformal learning of deep Koopman embedding

3.1 From online learning...

We consider an online learning setting with bounded memory, where the goal is to incrementally
learn a Koopman-invariant subspace from sequentially observed dynamics. Let ¢ € N denote the
current time, and let w € N* be a fixed window size. At each time step ¢, we assume access to a finite
buffer of recent observations Dy = {x4_,, - - ., 2+ }, Which serves to incrementally update the current
Koopman approximation.

At each time step t, we denote by @y, : X — C™ the current feature map and by K; € C™*™ the
corresponding finite-dimensional Koopman operator. Following [Li et al.,2017]], we also advocate to
enforce interpretability and preserve part of the original state, by designing the feature map to include
both the identity and a learnable nonlinear component, i.e.,

Dy, (x) = [:c, Dy, (m)}T , YVeeX “

where <i>9t : X — C™ % is a neural network with parameters 6;. This structure ensures that the
lifted representation retains access to the state = while learning an additional embedding ®g, (z) from
data. In order to capture temporal consistency within the buffer, we seek to minimize a multi-step
prediction error over recent observations on D,. This leads to the following loss function used for
online updates

Definition 3.1 (Online Koopman training loss). At each time step, the parameters (¢, ;) are
updated by minimizing the multi-step prediction loss, i.e.,



inimize |L£;(0;, K;) ls (04, Ky) |, 5
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where the index set Z, = {(s,7) € N* | t —w < s < s+ 7 < t} collects all valid multi-step
prediction pairs within the buffer D;, and each loss term is defined as

(©)

2
Es T(9t7Kt Z H‘b& xSJrT) K (b9t (strT 7) ‘

Jj=1

which accumulates the discrepancies between the lifted state at time s + 7 and all intermediate
predictions obtained by successively applying K; to earlier lifted states at times {s,...,s +7 — 1}.

This formulation is motivated by two design principles. First, as shown by |Otto and Rowley|[2019],
multi-step prediction promotes the identification of persistent spectral modes and approximate
Koopman eigenfunctions, thereby improving long-term prediction. Second, by explicitly including
the state 2 in the lifted representation (@), the model embeds a reconstruction constraint directly into
the consistency loss. This coupling eliminates the need for a decoder, as prediction errors in the lifted
space naturally reflect discrepancies in the original coordinates.

Remark 3.2 (Prediction conformity score). In particular, we have that
U0 (01, Iy) = Z 1@g, (1) — K7 Do, (21| ™

which quantifies the discrepancy between the current lifted state @y, (z;) and its multi-step predictions
from all previous states in the buffer. This term corresponds to predicting x; from each of the past w
observations using the learned Koopman operator K, and thus provides a direct measure of temporal
consistency toward the present.

In principle, one could perform multiple optimization steps to minimize £;(6;, K;) at each time ¢,
thereby reducing the residual prediction error as much as possible within the local buffer. However,
such an approach may lead to overfitting to recent data and degrade generalization. This behavior
is typical of baseline online learning schemes that rely on fixed optimization schedules without
accounting for model confidence or adaptation needs. To mitigate this issue, we propose a data-driven
stopping rule inspired by conformal PID control, introduced in the next section, which adaptively
decides whether additional updates are beneficial.

3.2 ...To conformal online learning

Assuming that the Koopman embedding, parametrized by (6;—1, K¢—1), has been adequately trained
on the previous buffer D;_1 = {x4_1_4,- .., Tt—1}, We now aim to determine whether it remains
consistent with the newly observed state ;. Rather than retraining unconditionally at each step, we
initialize (0, K;) = (0;—1, K;_1) and update the model only when the incoming data indicates a
significant deviation from previously learned dynamics.

To assess this deviation, we rely on the prediction conformity score introduced in Remark 3.2} which
measures the discrepancy between the current lifted state @y, (x;) and its multi-step predictions
from the past window. This score acts as a proxy for temporal alignment and forms the basis of our
adaptive update rule. To formalize this idea, we define a score function s; by treating the prediction
conformity score as a function of the test point 2z € X, with model parameters (6;, K3) fixed:

( eta Kt Z H‘I)Qt Kz-(pgt (xt—T)HQ . (8)

Note the difference with (7)), in the sense that s(z, (6;, K;)) is a function of the additional variable
x € X. The score s(x, (0, K;)) is instrumental in defining the prediction set as introduced now.
Inspired by the conformal prediction interval (PI) framework described in Section[2.2] we define a
prediction set as

Cr={z € X [ s¢(w, (01, Kt)) < qt}, ©)



Algorithm 1 Conformal Online Learning of Koopman embeddings (COLoKe)

Require: Buffer size w, initial parameters (6,,—1, K,,—1), step-size n > 0
1: Initialize conformity threshold ¢
2: fort =w,w—+1,... do

3: Observe new state x; and update buffer D; = {zt_qy, ..., Tt}
4: Set (Gt,Kt) “— (gtfl,thl)
5: Compute prediction conformity score s; < £1_y (8¢, Ky) > See Eq.
6: while s; > ¢; do
7: Perform a gradient-based step: (0;, K;) < (0, K;) — 0V kL(0:, K:) > See Eq. (B)
8: Recompute s < ¢y 0 (0, Kt)
9: end while
10: Update threshold: ¢;11 <+ ConformalPI(g;) > See Eq. (B) with e; = 1{s; > ¢:}
11: end for

where ¢; > 0 is a calibration threshold that controls the conformity level. In the standard conformal
prediction setting, the set C; serves as a prediction region for the next state x;. This interpretation
treats C; as a (1 — a))-confidence region in which the next observation is expected to fall, based on
past conformal scores.

In our setting, however, we use this prediction set in a novel way: not for uncertainty quantification,
but as a decision rule for model adaptation. Specifically, if the newly observed state x; lies outside
C', the prediction error is considered too large relative to past conformity, and an update of (6;, K;)
is triggered. Otherwise, the model is retained without further training. This repurposing of conformal
principles provides a lightweight, data-driven mechanism for online learning.

Crucially, while classical conformal prediction evaluates the conformity of new states, our approach
shifts perspective to evaluate the conformity of parameter configurations. That is, rather than asking
whether a new observation aligns with a fixed model, we ask whether there exists any parameter pair
(0, K') under which the current state x; is conformal.

In this spirit, and since we are not primarily interested in constructing a prediction interval for x;, we
introduce the novel notion of prediction score set.

Definition 3.3 (Prediction score set). Given a newly observed state x; and a conformity threshold
q: > 0, the prediction score set at time t is defined as

St = s¢(xt, Paramy), (10)

where Param, = {(0, K) such that s = s;(x¢, (0, K)) = £i—ww(6, K) < ¢ }. This set contains all
prediction scores attainable at x; by Koopman models that satisfy the current calibration constraint.

In this view, if the current model satisfies £;_, ., (6¢, K;) € S; (or equivalently, £y, (0, Kt) < qp),
it is deemed temporally consistent and it is retained. Conversely, if ¢, (0:, Ki) ¢ S, (i.e.,
li_w (0, Kt) > qp), the current model is no longer consistent with past dynamics, and an update of
(0, Ky) is triggered. We refer to the resulting adaptive online learning scheme, driven by conformity-
based update decisions, as Conformal Online Learning of Koopman embeddings (COLoKe). The
full procedure implementing the principles of conformal-based online learning is summarized in
Algorithm|[T]and sketched in Fig.[I] We provide below a preliminary bound for the dynamic regret of
COLoKe.

Theorem 3.4 (Dynamic regret of COLoKe). Let (0, K;) be the parameters produced by Algorithm
and let (07, K;) € argmin g sy L+(0, K) denote any time-dependent optimal model minimizing the
loss at step t. Further assume:

(Al) Each Ly is L-smooth with |V L.(0, K)|| < B;
(A2) The oracle path has bounded total variation and squared variation:
T T

Ve = 050, Ki) =07, K7 < 00, Sri= Y (0511, K7 )= (05, K71 < o0

t=1 t=1

(A3) The conformity thresholds satisfy Zle gt < O (ah(T)) for some sublinear, nonnegative,
nondecreasing function h;
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Figure 2: Illustration and empirical support for COLoKe’s adaptive learning strategy.

Then the dynamic regret satisfies: Ele [L:(0:, Ky) — L4(0F, KF)] < O (ah(T) + Vi + St).
Proof. The proof is deferred to Appendix [A] O

Assumptions (A1)—(A2) are standard in online learning and naturally satisfied in our setting. The
loss L; is smooth in both 6 and K, provided that the neural network ®4 employs smooth activations.
The bounded variation of the dynamic oracle (A2) reflects slowly evolving or piecewise-stationary
dynamics, which commonly arise in practice. The key nonstandard assumption is (A3), which bounds
the cumulative conformity thresholds ¢;, and which follows from our use of conformal PI. More
specifically, the function h comes from the saturation function r; in the update rule (3)), as designed in
Angelopoulos et al.|[2023al]. While we state (A3) as an assumption, it can be viewed as an empirical
hypothesis: in regimes with stable distributions and smoothly adapting models, conformity thresholds
decrease rapidly, leading to sublinear accumulation. This behavior is consistently observed across
our experiments (see Fig. 2a)), and deriving it remains an important direction for future work.

4 Numerical experiments

We now conduct experiments on multiple datasets derived either from solving differential equations
associated with canonical dynamical systems, or from real-world sequential measurements. For
reproducibility purposes, all simulated datasets will be made publicly available, and we report full
implementation details as well as complementary ablation studies in the supplementary material.

4.1 Illustration and validation

To build intuition about our conformity-based update mechanism, we begin by illustrating how
COLoKe behaves in a controlled setting. Then, we assess whether it (i) accurately recovers the
underlying Koopman model, and (ii) achieves predictive performance comparable to offline learning
approaches. Beyond overall accuracy, we are particularly interested in evaluating the quality of the
estimated spectral properties. To this end, we consider the following analytically tractable system
with known Koopman eigenvalues and eigenfunctions.

Setting. To validate the spectral accuracy of our online algorithm, we consider a benchmark system
with analytically known Koopman eigenvalues and eigenfunctions [Brunton et al., 2022} 2016]:

a(t) = au(t),

o(t)  =bv(t) —u?(t)),

where u denotes the time derivative of u. For a = —0.05 and b = —1, the system admits a single
attracting manifold v = u2. The Koopman spectrum contains the eigenvalues {\i = —1,\} =
—0.05, A\ = —0.1} with known analytical eigenfunctions. To generate data, we simulate trajectories
of the state vector x; = [u(t),v(t)] T, using a fixed integration step 0.01. We produce 1000 training
trajectories of length 100 by sampling initial conditions uniformly from [—2,2]?, and similarly
generate 1000 additional trajectories for testing.

vt e Ry, { (11)
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Figure 3: Convergence of the Koopman eigenvalue and eigenfunction estimates in the online setting.

Illustration and role of conformity-based updates. Fig. 2a] (left) depicts the evolution of the
calibration threshold ¢; (blue line) and the associated prediction score set S; (shaded blue region).
When the model yields a nonconformant score s; > ¢; (top orange), updates are triggered until
the score becomes conformant s; < g; (bottom orange). The number of updates (green crosses)
varies across time, reflecting when and how much the model must adjust to maintain consistency. As
training progresses, the steady decay of g; reflects growing confidence and temporal alignment of the
model with the data. This increased accuracy tightens the score set S;, making conformity harder
to achieve—uyet this is a desirable outcome, as it ensures high-precision adaptation. Importantly,
the number of updates remains controlled, showing that conformity can be maintained without
overfitting or instability. To complement these observations, Fig. [2a(right) reports the cumulative
thresholds, which exhibit sublinear growth of order O(+/T'), thereby supporting Assumption (A3) in
Theorem 3.4

Spectral properties. We monitor the spectral behavior of the learned Koopman operator by diagonal-
izing K at each time step and tracking its eigenvalues. Although eigenvalues may be complex in
general, the true values in this setting are real. Fig.[3a]reports the estimation errors over time, showing
that COLoKe recovers the correct spectrum, the estimated eigenvalues stabilize around their true
values. At the end of training, we obtain real-valued eigenvalues {—1.0091, —0.04996, —0.1001},
which closely match the ground-truth. The estimated eigenfunctions, shown in Fig.[3b} align with the
oracle up to a scalar factor.

Comparison with offline Koopman learning. To assess the computational efficiency of COLoKe,
we compare it with an offline deep Koopman model trained on full trajectories using the same
neural architecture. Figure [2b] reports the test error as a function of training time (in seconds),
measured on an NVIDIA RTX 2000 ADA GPU. Note that, the test error is evaluated on a separate
set of full trajectories, making it a reliable measure of generalization rather than step-wise prediction
accuracy. While the offline method requires optimizing over the entire dataset, COLoKe incrementally
adapts its model and reaches lower test error in significantly less time. The gap widens as training
progresses, highlighting the advantage of online updates in terms of both speed and generalization.
This experiment confirms that COLoKe delivers competitive predictive performance while being
substantially more frugal computationally.

4.2 Comparison with online baselines

We now evaluate the benefits of COLoKe against state-of-the-art online approaches on a suite of
benchmark dynamical systems, commonly used in Koopman and machine learning studies, and
spanning a wide range of complexity.

Datasets. We consider dynamical systems with a single attractor (Single Attractor) [Brunton et al.,
2016]], two stable spirals and a saddle point (Duffing oscillator) [Williams et al., 2015]], a limit cycle
(Van der Pol oscillator) [Sinha et al 2019]], and a chaotic regime with a strange attractor (Lorenz
system) [Kostic et all, 2022]. We complement them with a real-world dataset, which introduces




additional challenges such as noise and potential distribution shifts. More precisely, we study the
Electricity Transformer Dataset (ETD) [Zhou et al., 2021]]. Full details are provided in Appendix

Baselines. We compare COLoKe against the online learning strategies listed in Table 1| While the
table includes both online and batch-based methods, our evaluation focuses only on those compatible
with fully streaming, one-sample-at-a-time updates, excluding methods that require access to data
batches. For R-EDMD |[Sinha et al., 2019} 2023], since the radial basis function dictionary requires the
full data to estimate the centers (see Table[I), we use a polynomial dictionary. And the reconstruction
matrix is estimated with the current buffer by regularized pseudo-inverse. This purely online variant
is coined Online EDMD (OEDMD). For completeness, we also include a variant of COLoKe, referred
to as OLoKe, in which the conformal update rule is dropped and replaced by a standard strategy: at
each time step, the parameters are updated using a fixed number of gradient steps upon receiving a
new sample. Implementation details are reported in Appendix[B.2]

Metrics. We report two complementary metrics to evaluate model performance. The generalization
error measures one-step prediction accuracy on unseen trajectories. The online prediction error,
on the other hand, quantifies performance during streaming inference by averaging the training
prediction loss over time as new data arrives.

Results. Table 2]reports the performance averaged over 5 random splits of 2000 trajectories, along
with standard deviations of the means. Several important observations emerge. First, OEDMD
underperforms ODMD, primarily due to two factors: the reconstruction matrix is estimated online,
which limits accuracy; the appropriate choice of dictionary (i.e., polynomial degree) is unknown and
not adaptively selected. Second, COLoKe, combining a flexible neural architecture with a principled
update scheme, consistently matches or outperforms all baselines across both synthetic and real-world
datasets. In particular, it systematically outperforms its fixed-step counterpart OLoKe, demonstrating
the benefit of adaptive model refinement through conformity-based updates. On the chaotic Lorenz
system, (C)OLoKe achieves an improvement of nearly two orders of magnitude over the baselines,
highlighting its effectiveness in capturing highly complex and sensitive nonlinear dynamics. Third,
on non-autonomous real-world data, COLoKe achieves the best online performance, highlighting the
capacity of conformal PI control to dynamically adjust to distribution shift. Altogether, these results
show that COLoKe combines expressive modeling with principled online adaptation, making it a
strong and reliable choice for real-time learning in complex, ever-evolving dynamical environments.

5 Conclusion

We have introduced COLoKe, a principled framework for online learning of Koopman-invariant
representations, where conformal prediction is repurposed to adaptively trigger updates only when the
model becomes temporally inconsistent. By moving beyond fixed-step updates, COLoKe achieves
accurate and efficient learning of linear embeddings for nonlinear dynamics when data arrive se-
quentially. This work opens several promising directions for future research. On the theoretical
front, our results highlight the need for a more comprehensive understanding of conformity-based
online learning, with potential relevance well beyond Koopman operator estimation. The main
limitation of our analysis is assumption (A3), whose validity remains open although being empirically
supported; future work could aim to derive it from first principles by first assuming the absence of
distribution shift. On the methodological front, extending COLoKe to non-autonomous systems
could further broaden its applicability and help unlock practical Koopman learning in real-time,
resource-constrained, and dynamically evolving environments.
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A Proof of Theorem 3.4

For the reader’s convenience, we restate Theorembelowﬂ

Theorem Let (0:, K;) be the parameters produced by Algorithm |I| and let (0}, K}) €

argmin L:(0, K) denote any time-dependent optimal model minimizing the loss at step t. Further
(0,K)

assume:

(Al) Each L; is L-smooth with |V L.(6, K)|| < B;
(A2) The oracle path has bounded total variation and squared variation:
T T

Ve =Y (051, K )= (67, KD <00, Sre= D I1(67 0, Ky — (67, K7)IIP < oo

t=1 t=1
(A3) The conformity thresholds satisfy Zle gt < O (ah(T)) for some sublinear, nonnegative,
nondecreasing function h;

Then the dynamic regret satisfies: Zthl [Le(0r, Ki) — L4(0F, K])] < O(ah(T) + Vi + St).

Proof. Since ly_y, 1, (¢, Kt) < qi, we have

w(w+ 1)

5 “qt-

Li(0, Ky) = Z Co (0, Ky) <|Zi| - b0 (01, Kyt) <
(s,7)EL,
Letc = w, then we have:
Li(0, Ki) — Lo(07, Kf) < c-qe — Lo(07, KY).
Let us define the error:
e =c-q — L(0],K}).
We decompose ¢; as:
e =c-q — Lo(07 11, Kipq) + Lo(0700, Kipq) — Lo(0F, K) -

(a) (b)

Step a: By assumption (A3),
T

T
Do(era = Li(0F K)) S ¢ Y ar < O(ah(T)).

t=1 t=1

'Please note that the version appearing in the main paper contains a typo: the second part of assumption (A2)
was inadvertently omitted. This will be corrected in the final version.
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Step b: We now bound the drift term due to the oracle movement.

Let z; := (0, K}) and 2}, | := (0}, K} ). Since L, is L-smooth with ||VL,|| < B, we use the
standard smoothness bound:

* * * * * L * *
Li(zi11) = Lo(z7) < (VL(2F), 2041 — 2¢) + §||Zt+1 % ||2
* * * L * * (12
SVLEON - Nz — 201+ §||Zt+1 —2(|%
Using | VL (2f)|| < B, define A; := ||z}, — 2/, so:
* * L
Li(zi11) — Lo(27) < BA + §At2~
Summing over ¢t from 1 to 7":
T T . X I
> Li(zfy) — Li(z)) <BY A+ 5 > A}=BVr+ 581 =0(Vr + 57).
t=1 t=

Combining both contributions:

Z [L4(0, Kt) — L4(07, K[)] < O(ah(T)) + O(Vr + St) = O(ah(T) + Vi + St).

B Experimental settings

We detail below our experimental settings. For the sake of reproducibility, all datasets and models
can be found at https://anonymous.4open.science/r/Neurips-COLoKe-6776.

B.1 Datasets and metrics

We evaluate performance on four synthetic datasets generated by solving ordinary differential
equations (ODEs), as well as one real-world dataset. For each synthetic setting, we simulate 2000
trajectories and construct 5 random train-test splits {(Zir2i, 7tt)}> _ . For each split, models are

trained using the training trajectories while computing the online prediction error

T

1 1 i
k= |giraim] > T ¢ > [l — Model,_ (7,12, (12)
| k | i Ttrain - t=to+1
k

After the training, models are evaluated on the held-out trajectories to compute generalization error

1 K3
& = ] 2 iZIIxt — Modelr (7" ). (13)

ZeIteat

Resuls are reported in Table 2] as averages accross the five splits, along with the standard deviation of

the means, i.e.,
_ )2
\/5 1 Zk 1 ek — €)

M)

I
o] =
]

€k, O¢ ; (14)
= V5
and \/
1 o 5— IZk 1 )
- , G¢ . (15)
E=5 28 f

Datasets are detailed below.
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Single Attractor. This system, studied in depth in Section4.1]and also considered in Section 4.2
is a simple 2D ODE whose dynamic converges to a known attracting manifold [Brunton et al.l 2016,
2022||. Trajectories are simulated via odeint from SciPy with 100 time steps, equally spaced with
step size At = 0.01, using initial conditions sampled uniformly from the domain [—2,2]2. The
continuous-time eigenvalues reported in Section[d.1] are obtained from the estimated discrete-time
ones via the transformation A = log(Agisc)/At. The ground-truth Koopman eigenfunctions for this
system are given by ¢ = x9 — ﬁ 22, o = 21, and @3 = 7.
1 2

Duffing Oscillator. This system appears in the study of nonlinear oscillations and serves as a
classical benchmark for testing methods in dynamical systems. More specifically, the dynamics
follow:

i = =6t — u(B + pu?), (16)
where the parameters J, 5, and p represent the damping coefficient, the linear stiffness, and the
nonlinear stiffness respectively. Here, we choose the parameters 6 = 0.5, 8 = —1, and p = 1,

following the setting used in [Williams et al., 2015} |Otto and Rowley, 2019]]. This nonlinear system
exhibits two stable spirals at u = 1,4 = 0 and a saddle at the origin. Trajectories are simulated
using odeint, each consisting of 100 time steps with a fixed interval At = 0.025. Initial conditions
are sampled uniformly from the domain [—2, 2]?.

Van der Pol Oscillator. The Van der Pol oscillator is a classical nonlinear system that exhibits
self-sustained oscillations with a stable limit cycle. Its dynamics are governed by the second-order
differential equation:

U=, a7
v = p(l —u?)v — u, (18)
where 1+ > 0 controls the nonlinearity and damping strength. We follow the setup in Sinha et al.

[2019] and set ;+ = 0.2. Trajectories are simulated using odeint, with 100 time steps and a fixed
step size of At = 0.01. Initial conditions are sampled uniformly from the square domain [—4, 4]2.

Lorenz System. The Lorenz system is a classical example of a chaotic dynamical system, originally
developed to model atmospheric convection. Its dynamics are governed by the following system of
nonlinear differential equations:

u=o(v—u), (19)
o =u(p—w) v, (20)
w = uv — Pw, (2D

where we have chosen o = 10, p = 28, and § = 8/3, a commonly studied parameter regime known
to induce chaotic behavior which was also considered in [Kostic et al.l [2022]. We simulate the
trajectories using RK45, with a time step At = 0.01 over 500 steps. Initial conditions are sampled
uniformly from the cube [—10, 10]® centered at the origin.

Real Dataset (ETTh1). The ETThI dataset is part of the Electricity Transformer Dataset (ET-
Datasetf] introduced by Zhou et al.|[2021]. Specifically, ETTh1 contains data recorded at hourly
intervals for roughly two years from an electricity transformer station. The dataset consists of a single
trajectory of 6 features: HUFL (High Use Frequency Load), HULL (High Use Low Load), MUFL
(Medium Use Frequency Load), MULL (Medium Use Low Load), LUFL (Low Use Frequency
Load), and LULL (Low Use Low Load), along with OT (Oil Temperature), which is the value to be
predicted in forecasting tasks in common experimental settings. In our setting, we aim to learn the
transformer’s load profile as a dynamical system. Since we now evaluate the models one a single
trajectory, the two metrics are calculated slightly differently. Let the online prefiction error at time
step t be erry = ||z; — Model;_q (z4_1)||%. We report in Table 2] the temporal mean of err,

T

_ 1

err = T 1y Z erre, (22)
t=to+1

“https://github.com/zhouhaoyi/ETDataset
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and the standard deviation of err;

T

1
Gorr = \| 7 > (erry —ar7)”. (23)

T—tg—1,4<,

To assess generalization, we stop online learning at 7' and compute the one step prediction error over
a future horizon up to T,. This setting mimics deployment where future predictions must be made
without further adaptation. Specifically, we report the temporal mean and the standard deviation of
generalization error (Note that all err, for ¢ > T' are computed using Modelr)

T T
1 2 . 1 Zg —
Wg = 7T T E erry, Oerry, = ﬁ (GTTt — €TT9)2. (24)
g t=T+1 9 t=T+1

For all datasets, data points prior to time ¢, are used to initialize the model parameters, including
those of the Conformal PI control for COLoKe [[Angelopoulos et al.,|2023a]]. In the case of synthetic
datasets, we set to = T'/5, resulting in ¢y = 20 for the single attractor, Duffing oscillator, and Van
der Pol oscillator, and ¢ty = 100 for the Lorenz system. For the real-world ETTh1 dataset, we use
to = 100, with a total trajectory length of 7" = 200, and a generation horizon of T, = 250. For deep
models (OnlineAE, COLoKe and OLoKe), the buffer size is w = 5 for all synthetic datasets and
w = 30 for ETTh1 dataset.

B.2 Baseline Models

This section details the baseline models used in our experiments, including their initialization, neural
network architectures (when applicable), and online training procedures.

Among the various models considered, the most commonly used in the literature are ODMD and our
variant OEDMD (also known as RR-EDMD), which we briefly recall below.

ODMD. Online Dynamic Mode Decomposition [Zhang et al., 2019] incrementally estimates a linear
model from sequential data, enabling efficient updates without storing the entire dataset. Given a

trajectory {21, xa, . . . x4, } available to time to for model initialization. Let X;, = [x1,z2, ..., Tty—1]
and Y;, = [x2, 23, ..., x4, ]. The matrix Ky, is computed by
Ky =Y Xb =Y X, (X, X,0) 7t (25)
Let .
Qi =Yy, X, and Py = (X, X)), (26)

then K;, = @y, P:,. We start the online learning when a new observation x; for t = to + 1 arrives:
Qi = Qi1+ attx;[l, and P{l = P[_ll + xt,lxll. 27
The matrix K; = Q¢P; is obtained by inverting P[l using Sherman Morrison formula

-
B -1 P_xyx,_ 1Py

Po= (P +max, ) =Po1— =
1 + xt_lpt_lxt_l

(28)

This online formulation allows for recursive updates of K; and yields an efficient and memory-light
algorithm for learning linear dynamics in real time. The readers are referred to [Zhang et al.,|2019]
for a comprehensive explication of ODMD.

OEDMD. We first present Recursive EDMD [Sinha et al.,|2019|] and point out its limitations for
pure online setting, in order to introduce the variant OEDMD. Choose a fixed dictionary ¢ : X — R”

®(z) = [p1(x), pa(@), ..., bp(2)] " . (29)

Let Xy, = [®(x1), P(22),...,P(z,—1)] and Yy, = [®(x2), P(z3), ..., P(a,)], then the initial-
ization of R-EDMD follows the equations (23)and (26). The recursive updates of K are given by
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equations (27) and (28). To get predictions in the state space X', one should solve a least squares
problem

t
mgn; |2k — C® ()2 (30)

Typically, this involves the storage of all historical data. Therefore, we propose to calculate the linear
reconstruction matrix C using the current buffer D;:

t
min >l — CP(xp)|%. (31)

k=t—w

Since the modified problem may not have a closed form solution due to the buffer size, we use
regularized pseudo-inverse to efficiently update C'. Rewrite the problem with Ridge regularization
(p = 1075 for all experiments)

t
i -C® 2 . 2
mclnk;w [k — CR(zi)[” + plIClIF (32)

Let Z = [X4—w, ..., o) and Dz = [P(x4—y), . . ., P(x4)], then we have the closed form solution
C =20} (00} +pI) . (33)

In the original work [Sinha et al., 2019], the authors used Radial Basis Functions (RBF) as the
fixed dictionary. However, to estimate informative centers for RBF, one needs to have access to the
full trajectory up to time 7. When estimating the centers with trajectory up to time t(, the model
gives poor results on all datasets for both metrics. Therefore, we choose a polynomial dictionary
of degree 2, which provides a lifted representation dimension comparable to other baseline models.
Increasing the degree beyond 2 offers no significant performance gain. On the contrary, it degrades
the performance on the real dataset and results in substantially higher computational costs.

We now describe the deep models used in our experiments. All models are trained using the AdamW
optimizer with a learning rate of 10~3, both during parameter initialization and online training. The
initialization phase consists of 4000 epochs for synthetic datasets and 5000 epochs for the real-world
dataset. The neural network architectures used in each model are detailed below.

COLoKe. The detailed presentation of COLoKe can be found in Section The neural network ® is
fully connected with architecture {d, 32, 16, 8, m—d} for synthetic datasets and {d, 64, 32, 16, m—d}
for the real dataset. The dimension of lifted representation m is chosen to be d + [d/2] for all
experiments. Model parameters and initial conformity threshold are initialized with {xq,--- ,2¢,}
as already discussed. The initial threshold g, is set to be 1 — « quantile of the set of scores
{Sw+1,- -+ Sty } computed with the initialized model. The model parameters (6;, K;) are updated
online according to Algorithm[I] For all synthetic datasets, the hyperparameters for Conformal PI
procedure are o« = 0.5, np; = 0.1, Csqr = 5, and we set C's,; = 10 for the real dataset [Angelopoulos
et al.,[2023al].

OLoKe. The only difference between COLoKe and OLoKe is the online training strategy. For every
new buffer D;, OLoKe performs a fixed number of iterations. We keep Nty = 100 for synthetic
datasets and N = 500 for the real dataset. See details in Appendix

OnlineAE. We implement the model in [Liang et al.| 2022]]. The original work tackles the prob-
lem of Model Predictive Control (MPC). We aim only to perform online learning of dynamics.
For synthetic datasets, the encoder architecture is {d, 32, 16,8, m} and the decoder architecture is
{m, 8,16, 32, d}. For the real dataset, the encoder architecture is {d, 64, 32,16, m} and the decoder
architecture is {m, 64, 32, 16, d}. The dimension of lifted representation m is chosen to be d + [d/2].
Thus, the model architecture of OnlineAE aligns with COLoKe and OLoKe. The loss function at
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time ¢ is defined as

t
Li(Dy, @y, Uy, Ky) = Z [ [Ki @t (2r-1)] — 53k||2 + || W 0 @y (k) — $kH2

k=t—w

prediction loss autoencoding loss
+ | Ko (1) — ()|,

lifted prediction loss

where ®; is the encoder and W, is the decoder. The online training strategy consists of fixed iterations
with Njer = 100 for synthetic datasets and Njto, = 500 for the real dataset, which aligns with
OLoKe.

C Ablation studies

The ablation studies are performed on the VAP oscillator since in the online learning setting the
performance on this dataset won’t be influenced by training on the last buffer close to fixed points.

9 4e-03{ @ test error _é 1251
online error S 1001
S | 17}
g 1.8e-03 : |
¥ 1.2¢-031 £
i=
6.0e-04 1 e § o5
window size window size

Figure 4: Effect of window size

C.1 Effect of window size on COLoKe performance

We perform a dedicated study on the influence of the window size w, tested at values 1, 2, 4, 6, 8,
and 10, used to build buffers. In general, this parameter can impact performance. But we show that
COLoKe is sufficiently robust to this parameter. We report both generalization and online prediction
errors. Figure [] shows that the test (generalization) error is not very sensitive to the window size.
However, online error is positively correlated to the window size. This is because the model is
trained on the whole buffer D; at time ¢, so it maintains the performance on the past data while it
decreases slightly the performance on the most recent data. Moreover, the execution time grows
rapidly with window size, highlighting the necessity to choose an appropriate window size for online
efficiency. Note that for non-autonomous systems that change constantly, the influence of window
size will be more important on model performance and in such cases, an appropriate algorithm to
adaptively choose window size is important to ensure the model’s capacity to adapt to the changes
while maintaining the training efficiency.

The results reported in Table [3|complete Table [2]for synthetic datasets by adding a new column that
corresponds to COLoKe with w = 1. The two models achieve similar performances and outperform
other baseline models, which shows that our conformal online framework is relatively robust to
window size.
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Table 3: COLoKe (w = 5) vs COLoKe (w = 1)

COLoKe (w = 5)

COLoKe (w = 1)

Single
attractor

Duffing
oscillator

VdpP
oscillator

Lorenz
system

2.4-1077
(+3.6-107%)
76-1077
(£9.6-1078)

31-10°¢
(£2.3-1077)

7.3.107°
(£1.9-107%)

3.8.107*
(£1.2-107%)
6.0-107%
(£1.4-107%

6.5-1073
(£1.0-107%
3.3.-10°3
(£1.1-107%)

6.9-1077
(£3.2-1077)
4.3-107°
(£6.9-107%)

5.7-107°
(£1.0-107%)

1.3-107*
(£2.2-107%)

3.8-107%
(£1.7-107%
5.9-10"%
(£1.8-107%)

8.7-107%
(+£8.8-107%)
4.8-1073
(£3.5-107%
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C.2 Impact of number of updates in OLoKe

We report in Figure [5] the impact of the number of inner steps in OLoKe on the performance. We
evaluated inner steps at 10, 50, 100, 150, and 200. Results show that the test error is slightly impacted
from 50 steps.

2.46-031 @ test error é 125+
online Error Q

= 1.8e-03 & 1007
2 2

8 1.2¢-031 £ 75

i = ]

6.0e-04 .5 50

50 100 150 200 50 100 150 200
iteration iteration

Figure 5: Impact of number of updates

19



	Introduction
	Mathematical background
	Data-driven learning of the Koopman operator
	Conformal prediction for online data

	Online conformal learning of deep Koopman embedding
	From online learning…
	…To conformal online learning

	Numerical experiments
	Illustration and validation
	Comparison with online baselines

	Conclusion
	Proof of Theorem 3.4
	Experimental settings
	Datasets and metrics
	Baseline Models

	Ablation studies
	Effect of window size on COLoKe performance
	Impact of number of updates in OLoKe


