Linear Modeling of the Adversarial Noise Space

Jordan Patracone¹, Lucas Anquetil², Yuan Liu², Gilles Gasso², Stéphane Canu²

¹ Inria MALICE, Lab. Hubert Curien, France

² LITIS, France

Adversarial Attacks

Among the various adversarial attacks, we restrict to perburbation-based attacks

Problem: Given a classifier C_f

 $f\colon \mathbb{R}^P o \mathbb{R}^c$ typically is a neural network with associated classifier $C_f = rgmax_{i\in\{1,\ldots,c\}}(f(\cdot))_i$

Adversarial Attacks

Among the various adversarial attacks, we restrict to perburbation-based attacks

Problem: Given a classifier C_f , find a small perturbation (*adversarial noise*) to a well classified example

 $f\colon \mathbb{R}^P o \mathbb{R}^c$ typically is a neural network with associated classifier $C_f = rgmax_{i\in\{1,\ldots,c\}}(f(\cdot))_i$

small \Leftrightarrow inside a ℓ_p -ball with given small radius: ℓ_p -attack

Adversarial Attacks

Among the various adversarial attacks, we restrict to perburbation-based attacks

Problem: Given a classifier C_f , find a small perturbation (*adversarial noise*) to a well classified example such that the perturbed example (*adversarial example*) becomes misclassified.

 $f\colon \mathbb{R}^P o \mathbb{R}^c$ typically is a neural network with associated classifier $C_f = rgmax_{i\in\{1,\ldots,c\}}(f(\cdot))_i$

small \Leftrightarrow inside a ℓ_p -ball with given small radius: ℓ_p -attack

Specific Attacks

For each $\mathbf{x}^{(i)}$, learn $\epsilon^{(i)}$ such that $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + \epsilon^{(i)}$ is an adversarial example

Specific Attacks

For each $\mathbf{x}^{(i)}$, learn $\epsilon^{(i)}$ such that $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + \epsilon^{(i)}$ is an adversarial example

High fooling rate

Specific Attacks

For each $\mathbf{x}^{(i)}$, learn $\epsilon^{(i)}$ such that $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + \epsilon^{(i)}$ is an adversarial example

High fooling rate

Universal Attack

Learn ϵ such that, for each $\mathbf{x}^{(i)}$, $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + \epsilon$ is an adversarial example

Poor fooling rate

Specific Attacks

For each $\mathbf{x}^{(i)}$, learn $\epsilon^{(i)}$ such that $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + \epsilon^{(i)}$ is an adversarial example

High fooling rate Poor transferability

Universal Attack

Learn ϵ such that, for each $\mathbf{x}^{(i)}$, $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + \epsilon$ is an adversarial example

Poor fooling rate High transferability

Proposed Attack

Principle

LIMANS

Linear Modeling of the Adversarial Noise Space

 $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + D\mathbf{v}^{(i)}$

 $D = [D_1, \dots, D_M]$ are universal directions (*size of* $\mathbf{x}^{(i)}$) $\mathbf{v}^{(i)} = [\mathbf{v}_1^{(i)}, \dots, \mathbf{v}_M^{(i)}]$ are specific coding vectors (*scalars*)

Principle

LIMANS

Linear Modeling of the Adversarial Noise Space

 $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + D\mathbf{v}^{(i)}$

 $D = [D_1, \dots, D_M]$ are universal directions (*size of* $\mathbf{x}^{(i)}$) $\mathbf{v}^{(i)} = [\mathbf{v}_1^{(i)}, \dots, \mathbf{v}_M^{(i)}]$ are specific coding vectors (*scalars*)

High fooling rate High transferability

Principle

By tuning the size of D, LIMANS bridges the gap between universal and specific attacks

$$\begin{split} \underset{D=[D_1,\ldots,D_M]\in\mathbb{R}^{P\times M}}{\text{maximize}} & \frac{1}{N}\sum_{i=1}^N \mathbb{1}_{\{C_f(\mathbf{x}^{(i)'})\neq C_f(\mathbf{x}^{(i)})\}}\\ & V=[\mathbf{v}^{(1)},\ldots\mathbf{v}^{(N)}]\in\mathbb{R}^{M\times N}} \end{split} \text{ s.t. } \left\{ \begin{array}{l} \mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + D\mathbf{v}^{(i)} \in \mathcal{X} \\ \|D\mathbf{v}^{(i)}\|_p \leq \delta_p \\ \|D_j\|_p = 1 \end{array} \right., (\forall i \in \{1,\ldots,N\}) \quad \textit{Valid examples}\\ (\forall i \in \{1,\ldots,N\}) \quad \textit{Small perturbations}\\ (\forall j \in \{1,\ldots,M\}) \quad \textit{Normalized directions} \end{array} \end{split}$$

Solving this problem is a challenge for three main reasons:

$$\begin{split} & \underset{\substack{D = [D_1, \dots, D_M] \in \mathbb{R}^{P \times M} \\ V = [\mathbf{v}^{(1)}, \dots, \mathbf{v}^{(N)}] \in \mathbb{R}^{M \times N}}}{\sum_{i=1}^{N} \mathbb{1}_{\{C_f(\mathbf{x}^{(i)'}) \neq C_f(\mathbf{x}^{(i)})\}}} \\ & \text{s.t.} \quad \begin{cases} \mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + D\mathbf{v}^{(i)} \in \mathcal{X} \\ \|D\mathbf{v}^{(i)}\|_p \leq \delta_p \\ \|D_j\|_p = 1 \end{cases}, (\forall i \in \{1, \dots, N\}) \quad Small \ perturbations \\ (\forall j \in \{1, \dots, M\}) \quad Normalized \ directions \end{cases} \end{split}$$

Solving this problem is a challenge for three main reasons:

- The indicator function $1_{\mathcal{S}}$ is nonconvex & argmax in C_f is nonsmooth

Solving this problem is a challenge for three main reasons:

• The indicator function 1_S is nonconvex & argmax in C_f is nonsmooth \rightarrow replace by surrogate loss function

Solving this problem is a challenge for three main reasons:

- The indicator function 1_S is nonconvex & argmax in C_f is nonsmooth \rightarrow replace by surrogate loss function
- The presence of the DNN f that is non-linear

$$\begin{array}{l} \displaystyle \operatorname*{approx} \operatornamewithlimits{maximize}_{\substack{D=[D_1,\ldots,D_M]\in \mathbb{R}^{P\times M}\\ V=[\mathbf{v}^{(1)},\ldots,\mathbf{v}^{(N)}]\in \mathbb{R}^{M\times N}}} \frac{1}{N}\sum_{i=1}^N \mathcal{L}(f(\mathbf{x}^{(i)'}),f(\mathbf{x}^{(i)}))\\ \\ \mathrm{s.t.} & \left\{ \begin{array}{l} \mathbf{x}^{(i)'}=\mathbf{x}^{(i)}+D\mathbf{v}^{(i)}\in\mathcal{X}\\ \|D\mathbf{v}^{(i)}\|_p\leq\delta_p\\ \|D_j\|_p=1 \end{array} \right., (\forall i\in\{1,\ldots,N\}) \quad Valid\ examples\\ ,(\forall i\in\{1,\ldots,N\}) \quad Small\ perturbations\\ ,(\forall j\in\{1,\ldots,M\}) \quad Normalized\ directions \end{array} \right.$$

Solving this problem is a challenge for three main reasons:

- The indicator function 1_S is nonconvex & argmax in C_f is nonsmooth \rightarrow replace by surrogate loss function
- The presence of the DNN f that is non-linear \rightarrow approximate solution is enough

$$\begin{array}{l} \displaystyle \operatorname*{approx} \underset{V=[D_1,\ldots,D_M]\in \mathbb{R}^{P\times M}}{\operatorname{approx}} \frac{1}{N} \sum_{i=1}^N \mathcal{L}(f(\mathbf{x}^{(i)'}),f(\mathbf{x}^{(i)})) \\ & \overset{D=[D_1,\ldots,D_M]\in \mathbb{R}^{P\times M}}{V=[\mathbf{v}^{(1)},\ldots \mathbf{v}^{(N)}]\in \mathbb{R}^{M\times N}} \end{array}$$
s.t.
$$\left\{ \begin{array}{l} \displaystyle \mathbf{x}^{(i)'}=\mathbf{x}^{(i)}+D\mathbf{v}^{(i)}\in \mathcal{X} \\ & \|D\mathbf{v}^{(i)}\|_p\leq \delta_p \\ & \|D_j\|_p=1 \end{array} \right., (\forall i\in\{1,\ldots,N\}) \quad Small \ perturbations \\ & \|D_j\|_p=1 \end{array} , (\forall j\in\{1,\ldots,M\}) \quad Normalized \ directions \end{array} \right.$$

Solving this problem is a challenge for three main reasons:

- The indicator function 1_S is nonconvex & argmax in C_f is nonsmooth \rightarrow replace by surrogate loss function
- The presence of the DNN f that is non-linear \rightarrow approximate solution is enough
- The 3 constraints

$$\begin{split} & \underset{V=[\boldsymbol{v}^{(i)}]_{p} \in \mathbb{R}^{P \times M}}{\operatorname{approx} \operatorname{maximize}_{V=[\boldsymbol{v}^{(1)}, \ldots, \boldsymbol{v}^{(N)}] \in \mathbb{R}^{M \times N}}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}^{(i)'}), f(\mathbf{x}^{(i)})) \\ & \underset{V=[\boldsymbol{v}^{(1)}, \ldots, \boldsymbol{v}^{(N)}] \in \mathbb{R}^{M \times N}}{\operatorname{pred}_{V=[\boldsymbol{v}^{(1)}, \ldots, \boldsymbol{v}^{(N)}] \in \mathbb{R}^{M \times N}}} N \quad i = 1 \\ \text{s.t.} \quad \begin{cases} \mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + D\mathbf{v}^{(i)} \in \mathcal{X} &, (\forall i \in \{1, \ldots, N\}) & Valid \ examples \\ \| D\mathbf{v}^{(i)} \|_{p} \leq \delta_{p} &, (\forall i \in \{1, \ldots, N\}) & Small \ perturbations \\ \| D_{j} \|_{p} = 1 &, (\forall j \in \{1, \ldots, M\}) & Normalized \ directions \end{cases} \end{split}$$

Solving this problem is a challenge for three main reasons:

- The indicator function 1_S is nonconvex & argmax in C_f is nonsmooth \rightarrow replace by surrogate loss function
- The presence of the DNN f that is non-linear \rightarrow approximate solution is enough
- The 3 constraints → we propose 2 different relaxations

Numerical Experiments

Visualisation of Adversarial Directions

Setting: Attack a VGG11 (top) or robust ResNet50 (bottom) on CIFAR10. Learn M=5 directions.

Having a linear model of the adversarial noise space allows for visual inspection of the adversarial directions, which is advantageous for understanding the attack behavior.

Visualisation of Adversarial Directions

Setting: Attack a VGG11 (top) or robust ResNet50 (bottom) on CIFAR10. Learn M=5 directions.

Having a linear model of the adversarial noise space allows for visual inspection of the adversarial directions, which is advantageous for understanding the attack behavior.

Visualisation of Adversarial Directions

Setting: Attack a VGG11 (top) or robust ResNet50 (bottom) on CIFAR10. Learn M=5 directions.

Mostly local spots

Mostly edges and corners

Having a linear model of the adversarial noise space allows for visual inspection of the adversarial directions, which is advantageous for understanding the attack behavior.

Impact of the Number of Directions

Setting: Attack a VGG11 on CIFAR10 with ℓ_2 -attacks.

As M increases, LIMANS progressively narrows the performance gap with specific attacks

Transferability

Setting: Attack a VGG11 on CIFAR10. Evaluate fooling performance on target classifiers (columns).

	MobileNet	ResNet50	DenseNet	VGG	R-r18	R-wrn-34-10
AutoAttack	62.5	43.0	44.0	100	2.7	2.7
VNI-FGSM	69.3	62.6	61.4	96.5	3.0	2.6
NAA	42.3	14.5	1.8	71.6	1.6	1.2
RAP	46.5	39.5	40.9	73.8	3.3	3.4
Ours	97.4	87.5	81.5	91.0	11.5	12.6

Transferability

Setting: Attack a VGG11 on CIFAR10. Evaluate fooling performance on target classifiers (columns).

	MobileNet	ResNet50	DenseNet	VGG	R-r18	R-wrn-34-10
AutoAttack	62.5	43.0	44.0	100	2.7	2.7
VNI-FGSM	69.3	62.6	61.4	96.5	3.0	2.6
NAA	42.3	14.5	1.8	71.6	1.6	1.2
RAP	46.5	39.5	40.9	73.8	3.3	3.4
Ours	97.4	87.5	81.5	91.0	11.5	12.6

AutoAttack performs best when **source classifier = target classifier** (e.g. VGG)

Transferability

Setting: Attack a VGG11 on CIFAR10. Evaluate fooling performance on target classifiers (columns).

	MobileNet	ResNet50	DenseNet	VGG	R-r18	R-wrn-34-10
AutoAttack	62.5	43.0	44.0	100	2.7	2.7
VNI-FGSM	69.3	62.6	61.4	96.5	3.0	2.6
NAA	42.3	14.5	1.8	71.6	1.6	1.2
RAP	46.5	39.5	40.9	73.8	3.3	3.4
Ours	97.4	87.5	81.5	91.0	11.5	12.6

AutoAttack performs best when source classifier = target classifier (e.g. VGG) Our model yields better transferability performance, i.e. source classifier \neq target classifier

Bypassing Attack Detectors

Setting: Attack a VGG11 on CIFAR10. Train systems to detect adversarial attacks (columns)

Classifiers / Detectors	detect FGSM	detect PGD	detect AutoAttack	detect LIMANS 10
FGSM	91.1	91.1	91.1	83.4
PGD	90.6	91.1	91.1	55.9
Autoattack	89.9	90.9	91.1	52.7
LIMANS ₁₀	75.7	81.0	81.6	88.9
LIMANS ₅₀₀	17.5	25.6	31.8	26.6
LIMANS ₁₀₀₀	15.9	26.1	32.1	21.7
LIMANS ₄₀₀₀	15.6	23.7	28.2	31.1

RAUD (*Robust Accuracy Under Defense*): quantifies the percentage of successful attacks detected

(the lower, the better)

Bypassing Attack Detectors

Setting: Attack a VGG11 on CIFAR10. Train systems to detect adversarial attacks (columns)

Classifiers / Detectors	detect FGSM	detect PGD	detect AutoAttack	detect LIMANS 10
FGSM	91.1	91.1	91.1	83.4
PGD	90.6	91.1	91.1	55.9
Autoattack	89.9	90.9	91.1	52.7
LIMANS ₁₀	75.7	81.0	81.6	88.9
LIMANS ₅₀₀	17.5	25.6	31.8	26.6
LIMANS ₁₀₀₀	15.9	26.1	32.1	21.7
LIMANS ₄₀₀₀	15.6	23.7	28.2	31.1

RAUD (*Robust Accuracy Under Defense*): quantifies the percentage of successful attacks detected

(the lower, the better)

LIMANS attacks consistently evade detection

outperforming specific attacks even at M = 10 and exhibiting robustness from M \geq 500

Conclusion

Conclusion

LIMANS

Linear Modeling of the Adversarial Noise Space

 $\mathbf{x}^{(i)'} = \mathbf{x}^{(i)} + D\mathbf{v}^{(i)}$

Experimental findings:

- Bridge the gap between specific and universal attacks
- Allows visual inspection of the learned directions
- Show great transferability
- Bypass adversarial detectors

Thank you for your attention! Questions?

Download the paper

Take-home message: Attacks are framed as specific linear combinations of universal adversarial directions