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Adversarial Attacks

Problem: Given a classi�er , �nd a small perturbation (adversarial noise) to a well classi�ed example such

that the perturbed example (adversarial example) becomes misclassi�ed.

Among the various adversarial attacks, we restrict to perburbation-based attacks
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Universal Attack

Learn  such that, for each ,

 is an adversarial example

Poor fooling rate

High transferability
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Principle

By tuning the size of , LIMANS bridges the gap between universal and speci�c attacksD
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Optimization Problem

Solving this problem is a challenge for three main reasons:

The indicator function  is nonconvex & argmax in  is nonsmooth → replace by surrogate loss function

The presence of the DNN  that is non-linear → approximate solution is enough

The 3 constraints → we propose 2 different relaxations
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Speci�c: AutoAttack, PGD, CW

Universal: UAP PGD, FAST UAP, CW UAP

Impact of the Number of Directions

As  increases, LIMANS progressively narrows the performance gap with speci�c attacks

Setting: Attack a VGG11 on CIFAR10 with -attacks.ℓ  2

M



Transferability

MobileNet ResNet50 DenseNet VGG R-r18 R-wrn-34-10

AutoAttack 62.5 43.0 44.0 100 2.7 2.7

VNI-FGSM 69.3 62.6 61.4 96.5 3.0 2.6

NAA 42.3 14.5 1.8 71.6 1.6 1.2

RAP 46.5 39.5 40.9 73.8 3.3 3.4

Ours 97.4 87.5 81.5 91.0 11.5 12.6

Setting: Attack a VGG11 on CIFAR10. Evaluate fooling performance on target classi�ers (columns).
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RAP 46.5 39.5 40.9 73.8 3.3 3.4

Ours 97.4 87.5 81.5 91.0 11.5 12.6

AutoAttack performs best when source classi�er = target classi�er (e.g. VGG)

Our model yields better transferability performance, i.e. source classi�er  target classi�er

Setting: Attack a VGG11 on CIFAR10. Evaluate fooling performance on target classi�ers (columns).
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Bypassing Attack Detectors

Classi�ers / Detectors detect FGSM detect PGD detect AutoAttack detect LIMANS 10

FGSM 91.1 91.1 91.1 83.4

PGD 90.6 91.1 91.1 55.9

Autoattack 89.9 90.9 91.1 52.7

LIMANS 75.7 81.0 81.6 88.9

LIMANS 17.5 25.6 31.8 26.6

LIMANS 15.9 26.1 32.1 21.7

LIMANS 15.6 23.7 28.2 31.1

RAUD (Robust Accuracy Under Defense): quanti�es the percentage of successful attacks detected

(the lower, the better)

Setting: Attack a VGG11 on CIFAR10. Train systems to detect adversarial attacks (columns)
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LIMANS 15.9 26.1 32.1 21.7

LIMANS 15.6 23.7 28.2 31.1

RAUD (Robust Accuracy Under Defense): quanti�es the percentage of successful attacks detected

(the lower, the better)

LIMANS attacks consistently evade detection

outperforming speci�c attacks even at M = 10 and exhibiting robustness from M ≥ 500

Setting: Attack a VGG11 on CIFAR10. Train systems to detect adversarial attacks (columns)
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Conclusion

LIMANS

Linear Modeling of the Adversarial Noise Space

Experimental �ndings:

Bridge the gap between speci�c and universal attacks

Allows visual inspection of the learned directions

Show great transferability

Bypass adversarial detectors

x =(i)′
x +(i) Dv(i)



Thank you for your attention!
Questions?

Download the paper

Take-home message: Attacks are framed as speci�c linear combinations of universal adversarial directions


