
Linear Modeling of the Adversarial Noise Space

Jordan Patracone1(�), Lucas Anquetil2, Yuan Liu2, Gilles Gasso2, and
Stéphane Canu2

1 Université Jean Monnet Saint-Etienne, CNRS, Institut d’Optique Graduate School,
Inria, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT- ETIENNE, France

2 Normandie Univ, INSA Rouen UNIROUEN, UNIHAVRE, LITIS,
Saint-Etienne-du-Rouvray, France

Abstract. Recent works have revealed the vulnerability of deep neural
network (DNN) classifiers to adversarial attacks. Among such attacks, it
is common to distinguish specific attacks adapted to each example from
universal ones, referred to as example-agnostic. Even though specific ad-
versarial attacks are efficient on their target DNN classifier to attack, they
struggle to transfer to others. Conversely, universal adversarial attacks
suffer from lower attack success. To reconcile universality and efficiency,
we propose LIMANS, a model of the adversarial noise space, allowing
to frame any specific adversarial perturbation as a linear combination
of the universal adversarial directions. We bring in two stochastic gra-
dient based algorithms for learning these universal directions and the
associated adversarial attacks. Empirical analyses conducted with the
CIFAR-10 and ImageNet datasets show that LIMANS (i) enables crafting
specific and robust adversarial attacks with high probability, (ii) provides
a deeper understanding of DNN flaws, and (iii) shows significant ability
in transferability.

Keywords: Adversarial attacks · Dictionary learning · Manifold learning.

1 Introduction

With recent technological advances, deep neural networks (DNNs) have found
widespread applications ranging from biomedical imaging to autonomous vehicles.
However, DNNs have been shown to be vulnerable to adversarial attacks [31].
These attacks are slight perturbations of clean examples that are well-classified
by the DNN, ultimately leading to misclassification. These perturbations may
take the form of common corruptions (e.g., for images it can be a change in
lightning conditions, colorimetry or rotations) or visually imperceptible learned
adversarial noises.

There essentially exist two ways of crafting adversarial noises. The first strategy
consists in finding a paired adversarial noise for each example to attack [5,25].
As such, it is deemed to be specific since each adversarial noise is specifically
designed for a given example. The second strategy aims at finding a unique
universal noise which, added to any example, is likely to fool the DNN [22]. Each
strategy comes with its pros and cons. On the one hand, although specific attacks

2 J. Patracone et al.

achieve great performances on the target DNN, the learned adversarial noises do
not fool other DNNs on the same examples, i.e., they transfer poorly. On the
other hand, universal attacks have shown higher transferability at the expense of
a weaker ability to fool the target DNN on which the universal adversarial noise
is learned.
Contributions. To reconcile specificity and universality, we suggest to linearly
model the adversarial noise space and propose LIMANS. For each example to
attack, an adversarial noise is crafted as a linear combination of adversarial
directions. While the adversarial directions are universal, the linear combination
coefficients are specific to each example to perturb. In order to learn both, we
propose two optimization problems associated to scalable stochastic numerical
solutions. We claim that:

– Adversarial directions learned by LIMANS demonstrate transferability across
diverse classifiers;

– The learned adversarial directions provide insights into DNN vulnerabilities;
– Adversarial examples generated by LIMANS exhibit great robustness to

existing attack detectors.

Outline. The rest of the paper is organized as follows: the state-of-the-art
researches on specific attacks, universal attacks and manifold of adversarial
perturbations are presented in Section 2. The proposed framework, as well as the
corresponding algorithmic solutions are detailed in Section 3. Finally, Section 4
showcases the adversarial noise model and provides experimental evaluations on
both CIFAR10 and ImageNet.

2 Preliminaries and Related Works

Let us consider the task of predicting labels in Y = {1, . . . , c} associated to data
from a P -dimensional feature space X ⊆ RP . We denote D the corresponding
distribution on X × Y while DX stands for the marginal distribution on X . We
stand in a white-box setting, where we assume to have fully access to a DNN
f : RP→Rc trained on this task. For any x ∼ DX , f(x) ∈ Rc represents the
vector of scores indicating the likelihood of the example to belong to each of c
classes. The predicted class is determined by Cf (x) = argmaxk∈Y f(x)k.

The purpose of adversarial attacks is to craft, for any x ∼ DX , an example
x′ ∈ X , called adversarial, such that x′ is close to x and Cf (x

′) ̸= Cf (x). In other
words, the adversarial example manages to change the prediction of the DNN f
while being very similar to a well-classified example. Hereafter, we restrict to the
peculiar case of perturbation-based attacks where x′ = x+ ϵ for some adversarial
noise ϵ. In order for the perturbation to be imperceptible, it is customary to
impose some constraints of the form ∥ϵ∥p ≤ δp for some ℓp-norm (typically ℓ2 or
ℓ∞) and some small budget δp > 0.

We now recall the two current paradigms: namely specific perturbations,
also called example-based perturbations, and universal perturbations which are
example-agnostic. Then, we motivate our approach from recent works aiming to
learn the manifold of adversarial perturbations.

Linear Modeling of the Adversarial Noise Space 3

2.1 Specific Perturbations

Specific perturbations are learned adversarial noises individually designed to
attack given examples [5,25]. More precisely, for any x ∼ DX , the corresponding
attack is of the form x′ = x+ ϵ(x) where the perturbation ϵ(x) depends on x.

Among the most prominent specific attacks are one-shot gradient methods
such as the Fast Gradient Sign Method (FGSM) [9], and more elaborate iterative
procedures like Projected Gradient Descent (PGD) [21], DeepFool [23], and the
method by Carlini and Wagner (CW) [3]. Notably, AutoAttack [6], an ensemble of
diverse parameter-free attacks, has emerged as the state-of-the-art for evaluating
neural network robustness.

The specificity of these attacks enables them to effectively deceive the tar-
geted classifier. However, recent works have shown their limitations in fooling
other classifiers trained on the same task. In other words, adversarial examples
generated by specific attacks often demonstrate poor transferability across dif-
ferent classifiers. To enhance their transferability, [36] proposed incorporating
input transformations, while [34] suggested stabilizing the update directions of
adversarial noise to avoid poor local optima, leading to the development of VNI-
FGSM and VMI-FGSM methods. Additionally, Neuron Attribution-based Attacks
(NAA) improved transferability by conducting feature-level attacks [39]. Lastly,
the Reverse Adversarial Perturbation (RAP) attack aimed to find adversarial
attacks located on a plateau of the loss function [26].

Learning these perturbations can be computationally extensive in the sense
that, for any new example to attack, it requires to run an algorithmic solution
once again. To alleviate this burden, universal perturbations were proposed [22].

2.2 Universal Perturbations

A universal perturbation is a single perturbation which, added to any example,
manage to fool a given classifier with moderate to high probability. Formally, it
amounts in finding ϵ so that, for any x ∼ DX , x′ = x+ ϵ is an adversarial attack.

Among them, universal adversarial perturbations are meticulously crafted to
exploit the most vulnerable areas of a classifier’s performance, the so-called worst-
case, to maximize their effectiveness across various inputs. The first universal
adversarial perturbation (UAP) was introduced in [22] by hinging on the DeepFool
attack. Later, different extensions of UAP were proposed: UAP-PGD [29] used a
projected gradient-descent algorithm to compute the universal perturbation, CD-
UAP [37] optimized an universal perturbation on a given subset of classes while
the Class-Wise Universal Adversarial Perturbations (CW-UAP) [2] elaborated
one universal perturbation per class.

Besides, another line of universal perturbations, called common corruptions,
aimed a reproducing types of harm that exist in real-world imaging systems [13].
These perturbations are visually understandable modifications of the examples,
readily comprehensible to humans, such as adjustments in brightness, rotation,
tilt of an image or added Gaussian or impulse noise. They are average-case
perturbations beyond the scope of this work. Even though common corruptions

4 J. Patracone et al.

(a) Universal noise. (b) Specific noise
(zoom on region 1).

(c) LIMANS noise
(zoom on region 2).

Fig. 1: Schematic representation of adversarial attacks. Two DNN classifiers
f1 (blue) and f2 (orange) are trained to classify red circles vs. green diamonds.

are closer to real-world harm, they need to be explicitly defined prior to any
perturbation crafting, thereby limiting the modeling of the perturbation space.

Universal attacks are fast but their applicability is still far-fetched because of
poor performances compared to specific attacks [4]. In an attempt to bridge the
gap between adversarial perturbations and common corruptions, techniques have
been explored to learn the manifold within which adversarial perturbations are
embedded.

2.3 Manifold of Adversarial Perturbations

Learning and understanding the manifold of adversarial perturbations is crucial
for comprehending the reasons for the existence and transferability of adversarial
attacks, as well as devising effective defense mechanisms against them.

The study done in [32] highlighted that the space of the adversarial noise paired
to an input example is a large continuous region. Then, [33] discovered that the
decision boundaries of different classifiers are closed and proposed to establish a
transferable subspace of the adversarial space across different classifiers. However,
the subspace was inferred based on the adversarial noise generated by the FGSM
method, significantly compromising its accuracy. Moreover, constraining the
hypothesis of transferability solely based on the dimension of this space restricted
its efficacy, particularly concerning CNN classifiers. In addition, certain studies
have investigated the overall structure of classifiers to elucidate the emergence of
adversarial attacks. For instance, [8] demonstrated that the decision boundaries
of a classifier reside close to examples and remain flat in most directions. More
recently, [7] theoretically studied the sufficient conditions on the existence
of effective low-dimensional adversarial perturbations while [18] claimed that
adversarial noise is caused by gradient leakage and the adversarial directions
are perpendicular to the classifier boundaries. To learn this manifold, it has
been proposed to use the singular vectors of some adversarial perturbations [14]
or principal component analysis [40], to train a specific neural network as a
generative network [1,12] or with generative adversarial networks [35].

Fig. 1 reports a schematic representation of adversarial attacks in the context
of a binary classification task (red circles vs. green diamonds). In particular, Fig. 1a

Linear Modeling of the Adversarial Noise Space 5

UNIVERSAL ATTACK SPECIFIC ATTACK

LIMANS

{𝑥!}!"#$

{𝑥!}!"#$

{𝑥!}!"#${𝑥!′}!"#$ {𝑥!′}!"#$

{𝑥!′}!"#$

TRAINING: Learning 𝑫 and {𝑣!}!"#$ INFERENCE: Learning only 𝑣

𝜖 {𝜖!}!"#$

+ += =

+ =

{𝜖!}!"#$

𝜖! = 𝑫𝑣!

SMALL SIZE OF 𝑫 LARGE SIZE OF 𝑫

𝑥 𝜖 𝑥′

+ =

TRUCK

TRUCK

TRUCKAIRPLANE AIRPLANE

AIRPLANE
DOG SHIP𝜖 = 𝑫𝑣

AFTER TRAINING
𝑫 IS OPTIMIZED

AND FROZEN
FOR FUTUR

ADVERSARIAL
EXAMPLES

Fig. 2: High-level overview of LIMANS. During training, the directions D
of the linear adversarial noise space are learned. During inference, the coding
vector v is crafted to attack any example to fool a given classifier.

illustrates how data points are located in the vicinity of the decision boundaries
of classifiers f1 (blue) and f2 (orange) trained on this task. Hence, adding a small
perturbation, learned on f1 can easily make them misclassified. Attacks can also
transfer to f2 when there is little bias between the two classifiers, as it is the
case in the Region 3. However, in practical scenarios, the situations depicted in
Region 1 and 2 are more prevalent: adversarial examples tend to deviate beyond
the decision boundary of f1 without necessarily crossing the boundary shared by
f1 and f2. Overall, universal perturbations (see ϵ in Fig. 1a) can achieve superior
transferability by averaging directions across the entire dataset, at the expense of
lower attack success rate. Conversely, specific perturbations (see ϵ(xi) in Fig. 1b)
show great attack performance on the target f1 but fail to transfer to f2.

In order to bridge the gap between specific attacks and universal attacks, we
propose to linearly model the adversarial noise space (LIMANS). The underlying
idea is to learn a set of adversarial directions (see {D1, D2} in Fig. 1c). The
spanned space enables the construction of specific adversarial examples by linearly
combining the adversarial directions. In essence, this learned space exhibits
transferability across different classifiers, leading to a higher attack success rate.

3 Linear Modeling of the Adversarial Noise Space

In this section, we introduce the proposed framework LIMANS, sketched in Fig. 2,
for modeling the adversarial noise space. Then, we propose two relaxations along
with their algorithmic solutions.

6 J. Patracone et al.

3.1 Problem Formulation

The originality of the present paper is to express adversarial perturbations using
a linear model. More formally, for any x ∼ DX , the corresponding adversarial
attack is written as x′ = x + ϵ(x) where the adversarial noise is decomposed
as ϵ(x) = Dv(x). On the one hand, D = [D1, . . . , DM] ∈ RP×M is a dictionary
made of M ∈ N+ normalized adversarial directions (also called noise atoms), i.e.,
∥Dj∥p = 1 for every j ∈ {1, . . . ,M}. On the other hand, v(x) ∈ RM plays the role
of a coding vector. While the dictionary D is shared across all attacks, v(x) allows
combining components of D in order to individually tailor perturbations for each
example x to attack. In other words, D is universal while v(x) is example-specific.
In the remaining of the paper, we simply write v(x) as v for the ease of reading.

We advocate to choose a number of atoms M ≪ P so that the linear adversarial
noise space spanned by the atoms, i.e., A = {

∑M
j=1 vjDj | vj ∈ R}, is low

dimensional. In order to learn the directions {Dj} of A, we suggest maximizing
the chances of fooling the classifier f on some training set T = {(x(i), y(i))}Ni=1,
that is the fooling rate (also known as attack success rate).

1
N

∑N
i=1 1{Cf (x(i)′)̸=Cf (x(i))} . (1)

This gives rise to the following optimization problem.

Problem 1 (Training). Given a classifier f and a training set T = {(x(i), y(i))}Ni=1

where each (x(i), y(i)) ∼ D, solve

maximize
D=[D1,...,DM]∈RP×M

V=[v(1),...v(N)]∈RM×N

1
N

∑N
i=1 1{Cf (x(i)′)̸=Cf (x(i))},

s.t.

x(i)′ = x(i) +Dv(i) ∈ X , (∀i ∈ {1, . . . ,N}),
||Dv(i)||p ≤ δp , (∀i ∈ {1, . . . ,N}),
∥Dj∥p = 1 , (∀j ∈ {1, . . . ,M}),

(2)

where 1S denotes the indicator function of the set S.

The number of atoms M acts as a trade-off quantifying the level of similarity
between all adversarial perturbations.

When M = 1, each perturbation is of the form ϵ(x) = v1D1, so they all vary
by a multiplicative constant v1 ∈ R. Actually, it is more likely that all differ by
their sign due to the constraint ||Dv(i)||p ≤ δp in Eq. (2) and the fact that greater
perturbations (in norms) are more amenable to fool the classifier. Hence, we are
in an under-fitting regime where the adversarial perturbations somewhat boil
down to a universal perturbation which cannot manage to fool all examples of
the training set but achieve great transferability across different DNN classifiers.

On the other hand of the spectrum, when M = N, there are enough degrees
of freedom to specifically tailor one direction Dj for each example of the training
set to attack. Therefore, we stand in an over-fitting regime, reminiscent of specific
attacks, where the learned adversarial noise space may transfer poorly.

Linear Modeling of the Adversarial Noise Space 7

Our proposed framework LIMANS bridges the gap between the two ends of
the spectrum by allowing the attacker to choose the number of atoms M better
suited for the task at hand. Once the adversarial noise space A is learned, it can
be used to attack unseen examples on any classifier f (potentially different than
the one used to learn A) as follows.

Problem 2 (Inference). Given A spanned by directions D ∈ RP×M, a classifier
f , and an example x ∼ DX . The associated attack reads x′ = x+Dv where v
solves

maximize
v∈RM

1{Cf (x′)̸=Cf (x)}, s.t.

{
x′ = x+Dv ∈ X ,

||Dv||p ≤ δp.
(3)

Problem 2 bears similarities with Problem 1 when the optimization over D is
dropped. In that case the optimization over V = [v(1), . . .v(N)] ∈ RM×N becomes
separable into N distinct problems: one for every v(i). Problem 2 is one instance
of them.

In the next section, we suggest two algorithmic solutions for solving Problem 1
and, by extension, also Problem 2.

3.2 Relaxations and Algorithmic Solutions

Solving Problem 1 is a challenge for three main reasons: i) the indicator function
1S , ii) the presence of the DNN f , and iii) the dictionary-based formulation of
the adversarial noise.

First, it is customary to replace the fooling rate by a surrogate loss function
(to minimize) in order to avoid algorithmic concerns regarding the nonconvexity
and nonsmoothness of the indicator function. Hereafter, we resort to one of them,
namely the logit margin loss of [3] that we recall below. Given a DNN f , an
example x ∼ DX classified as Cf (x) = y, it reads

Lγ(f(x
′), f(x)) = max

(
−γ, fy(x

′)−max
k ̸=y

fk(x
′)
)
, (4)

where γ > 0 is a hyperparameter.
Second, the optimization problem is nonconvex because of the highly non-

linear mapping f . Therefore, studying the Lipschitz regularity of the DNN f plays
a pivotal role in the derivation of convergence guarantees of first order algorithms
toward critical points of Problem 1. Since, we would like our approach to be
general enough for any f , we do not pursue the estimation of an upper-bound on
the Lipschitz constant of peculiar f , as conducted in [10].

Third, Problem 1 is difficult due to nonconvexity inherent to the dictionary-
based formulation of the adversarial noise. Although classical dictionary learning
problems are nonconvex, they are usually solved by alternating the optimization
over D and V since each alternating problem is convex. However, here this no
longer the case because of the presence of f being a highly non-linear mapping. A
direct optimization scheme over (D,V), in the spirit of the nonconvex proximal
splitting framework of [30], later applied in the context of classical dictionary

8 J. Patracone et al.

learning [27], was first considered but it that happened to be less effective than
expected in practice. Since we are only interested in finding a good approximate
critical point, we suggest two alternative problems which turned out to be more
fruitful from the practitioner’s point of view.

Regularized-LIMANS The first problem is designed by adding a soft penal-
ization of the constraint ||Dv(i)||p ≤ δp and relaxing the conditions x(i)′ ∈ X
from Problem 1.

Problem 3. Given a classifier f and a set T = {(x(i), y(i))}Ni=1 where each
(x(i), y(i)) ∼ D, solve

mimize
D=[D1,...,DM]∈RP×M

V=[v(1),...v(N)]∈RM×N

1
N

∑N
i=1 Lγ(f(x

(i) +Dv(i)), f(x(i))) + λh(δp,p)(D,v(i)),

s.t. ∥Dj∥p = 1 , (∀j ∈ {1, . . . ,M}),
(5)

where λ > 0 is a regularization parameter and h(δp,p) is a penalty defined as

h(δp,p) : (D,v) 7→ max(||Dv||p − δp, 0). (6)

Algorithm 1 summarizes the optimization scheme of Regularized-LIMANS.
The parameters (D,V) are optimized stochastically, making them suitable for
large-scale datasets. More specifically, D is updated using a projected gradient
descent to ensure that the constraints ||Dj ||p = 1,∀j are satisfied.

In order to select the hyperparameter λ > 0, a cross-validation is conducted
to ensure the generalization of the model. In practice, for the selected value of λ,
it might happened that the constraint on ∥Dv∥p is slightly violated. To ensure
the respect of the constraint, a post-processing is performed. Details are provided
in the supplementary material.

Remark 1. At inference-time, adversarial attacks are crafted as x′ = ProjX (x+
Dv), where ProjX denotes the projection operator onto X , and v is learned by
solving Problem 3 with D fixed.

Simple-LIMANS In the second problem relaxation, the constraints ∥Dv(i)∥p ≤
δp and x(i)′ ∈ X from Problem 1 are directly integrated in the objective function
as follows.

Problem 4. Given a classifier f and a set T = {(x(i), y(i))}Ni=1 where each
(x(i), y(i)) ∼ D, solve

mimize
D=[D1,...,DM]∈RP×M

V=[v(1),...v(N)]∈RM×N

1

N

N∑
i=1

Lγ

(
f
(
ProjX (x(i) + δp

Dv(i)

∥Dv(i)∥p
)
)
, f(x(i))

)
. (7)

Linear Modeling of the Adversarial Noise Space 9

Algorithm 1 Regularized-LIMANS
Require: Classifier f ; Learning rate ρ;

Dataset T ; Budget δp > 0; Optimizer
Optim; Batch size B; Parameter λ > 0

1: D = N (0, 1M×P); V = N (0, 1P×M)
2: for k = 0 to MAXEPOCH do
3: loss = 0
4: for (x(i), y(i)) ⊂ T do
5: x(i)′ = x(i)+Dv(i)

6: ŷadv = f(x(i)′); ŷ = f(x(i))
7: lossi=Lγ(ŷadv, ŷ)+λh(δp,p)(D,v(i))

8: loss = loss+lossi
9: if modulo(i) = B then

10: D ← Optim(∇Dloss)(Update)
11: V ← Optim(∇V loss)(Update)
12: D = Proj{D | ∥D∥p=1}(D)
13: loss = 0
14: end if
15: end for
16: end for
17: Dv(i) ← Proj{Dv | ∥Dv∥p≤δ}(Dv(i))

18: x(i)′ ← ProjX (x(i) +Dv(i))

19: return {x(i)′}Ni=1, (D, V)

Algorithm 2 Simple-LIMANS
Require: Classifier f ; Learning rate ρ;

Dataset T ; Budget δp > 0; Optimizer
Optim; Batch size B

1: D = N (0, 1M×P); V = N (0, 1P×M)
2: for k = 0 to MAXEPOCH do
3: loss = 0
4: for (x(i), y(i)) ⊂ T do
5: noise(i) = Dv(i)

6: x(i)′ = projX (x(i)+ δpnoise(i)

∥noise(i)∥p
)

7: ŷadv = f(x(i)′); ŷ = f(x(i))
8: lossi = Lγ(ŷadv, ŷ)
9: loss = loss + lossi

10: if modulo(i) = B then
11: D ← Optim(∇Dloss)(Update)
12: V ← Optim(∇V loss)(Update)
13: loss = 0
14: end if
15: end for
16: end for
17: V ← [||D•j ||pVj•] ∀j ∈ {1, . . . ,M}
18: D ← Proj{D | ∥D∥p=1}(D)

19: return {x(i)′}Ni=1, (D, V)

By reparametrizing each adversarial attack x(i)′ = ProjX (x(i) + δp
Dv(i)

∥Dv(i)∥p
),

it guarantees that the ℓp-norm of the adversarial noise is at most δp and that
x(i)′ ∈ X , by construction. The proposed algorithmic solution, reported in
Algorithm 2, proves to be computationally efficient since it does not require
additional hyperparameter tuning, contrary to Regularized-LIMANS.

Remark 2. One can determine normalized directions D by solving Problem 4
and, at termination, post-process D by normalizing each of the components.

4 Experiments

This section showcases a numerical assessment of LIMANS’ efficiency. We present
the experimental settings, offer insights, and compare its performance against
baseline attacks. Finally, we measure the transferability of the learned adversarial
noise space across different classifiers.

10 J. Patracone et al.

4.1 Experimental Settings

Experiments are conducted on two datasets: CIFAR-10[17] and ImageNet [16].
As suggested in [38], we discard the training set, used to train the classifiers,
and learn attacks only on the validation set. The latter is split it into three
parts, the first for learning the adversarial directions, the second for tuning
hyperparameters, and the last one for testing.
CIFAR-10 Experiments. We use 8000, 1000 and 1000 examples for training,
validating and testing, respectively. Attacks are evaluated on four vanilla classifiers
(MobileNet-V2, ResNet50, DenseNet121, VGG11) and two robust ones (ResNet-
18, WideResNet-34-10) obtained from the RobustBench repository3. Experiments
are conducted on a GPU Nvidia RTX 2080.
ImageNet Experiments. We split into 10000 training examples, 2000 validation
examples, and 5000 test examples. Attacks are designed on four vanilla classifiers
(ResNet-18, MobileNet-V2, DenseNet121, VGG11) and two robust classifiers3 (R-
r18 and R-wrn-50-2, equivalent to ResNet-18 and WideResNet-50-2). Experiments
are conducted on 4 GPU Volta V100-SXM2-32GB.
Baseline Attacks. Specific attacks are crafted by resorting to the TorchAttacks
library [15], while universal attacks are implemented using publicly available
resources. Additional details concerning LIMANS’ attack as well as the hyperpa-
rameter selection are provided in the supplementary material. Attack budgets δp
are the same as the one used in RobustBench, namely δ∞ = 8/255 and δ2 = 0.5
for CIFAR-10 and δ∞ = 4/255 for ImageNet experiments.

4.2 Insights and Attack Performance

In this section, we provide an analysis of the Simple-LIMANS attack (see Algo-
rithm 2) on CIFAR-10. We consider the pre-trained VGG11 with batch normal-
ization [24] and the robust ResNet-18 [28] classifier, referred to as the Standard
Classifier and Robust Classifier respectively.

Visualisation of Adversarial Directions Having a linear model of the adver-
sarial noise space allows for visual inspection of the adversarial directions, which
is advantageous for understanding the attack behavior. Fig. 3 shows how the
learned directions for M = 5 exhibit patterns which vary depending on the classi-
fier and the ℓp-norm. Overall, they spotlight recurring patterns in classification
such as edges and corners for the ℓ∞ atoms and local spots in the images for ℓ2
atoms. In particular, the directions of LIMANS-ℓ2 on the robust classifier are
reminiscent of Fourier modes. Similar conclusions, detailed in the supplementary
material, can be drawn on the MNIST dataset.

Impact of the Number of Directions Fig. 4 reports the test fooling rate of
ℓ2-based attacks4. The performance of LIMANS are displayed as functions of the
3 https://robustbench.github.io/
4 A similar experiment for ℓ∞-based attacks is reported in the supplementary material.

Linear Modeling of the Adversarial Noise Space 11

D1 D2 D3 D4 D5

(a) LIMANS-ℓ2 on Standard classifier

D1 D2 D3 D4 D5

(b) LIMANS-ℓ2 on Robust classifier
D1 D2 D3 D4 D5

(c) LIMANS-ℓ∞ on Standard classifier

D1 D2 D3 D4 D5

(d) LIMANS-ℓ∞ on Robust classifier

Fig. 3: Visualization of the learned universal adversarial directions (atoms of the
dictionary D) when M = 5, on CIFAR-10 and corresponding to the classifier
(left) VGG11 and (right) robust ResNet-18. All atoms have been rescaled for
display.

1 10 100 1000
Number of atoms M (log scale)

0
10
20
30
40
50
60
70
80
90

100

Te
st

 F
oo

lin
g

R
at

e

1 2
5

10
20

50
100

200
500 1k 2k 4k

Standard Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

1 10 100 1000
Number of atoms M (log scale)

0

10

20

Te
st

 F
oo

lin
g

R
at

e

1 2
5

10
20

50

100

200
500

1k 2k 4k

Robust Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

Fig. 4: Impact of the number of directions. Test fooling rate of adversarial
attacks under the ℓ2 norm constraint (δ2 = 0.5) on CIFAR-10 test data when
fixing a number of atoms M, associated to a standard VGG11 classifier (left) and
robust ResNet-18 classifier (right).

number of directions M. Interestingly, results show that LIMANS consistently
outperforms all universal attacks, even with just a single direction, i.e., M =
1. In light of the discussion in Section 3.1, this indicates that allowing each
individual perturbation to tailor its own multiplicative constant in front of the
universal perturbation D1 already permits to yield more efficient attacks. As
M increases, LIMANS progressively narrows the performance gap with specific
attacks. Between M = 500 and M = 4000, LIMANS achieves performance akin to
state-of-the-art specific attacks. It’s noteworthy that all specific attack methods
necessitate learning individual perturbations of size 32× 32× 3 = 3072 (for RGB
CIFAR-10 images) while LIMANS attacks only require to optimize over a coding
vector v of dimension M.

Attack Robustness Attacks, while effective in fooling classifiers, can also be
detected by trained detectors. To gauge the robustness of attacks, we employ

12 J. Patracone et al.

Table 1: Robustness performance of the LIMANS ℓ∞-attack (δ∞ = 8/255) in
terms of RAUD on the CIFAR-10 test data and against the attack detectors
plugged in both standard classifier (S.C.) and robust classifier (R.C.). The
smaller the RAUD, the more robust the adversarial attack is. The best
performance is marked in black bold font.

Detectors d dFGSM dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1 91.1 85.1
FGSM 91.1 85.1 91.1 85.1 91.1 85.1 83.4 79.5
PGD 90.6 84.9 91.1 85.0 91.1 85.1 55.9 73.7
Autoattack 89.9 84.6 90.9 85.0 91.1 85.0 52.7 71.5
LIMANS10 75.7 81.0 81.0 80.8 81.6 81.0 88.9 79.6
LIMANS500 17.5 71.5 25.6 72.2 31.8 74.2 26.6 69.4
LIMANS1000 15.9 70.1 26.1 70.9 32.1 72.5 21.7 68.7
LIMANS4000 15.6 69.6 23.7 70.4 28.2 72.6 31.1 68.4

the Robust Accuracy Under Defense (RAUD) [20], quantifying the percentage
of successful attacks detected. Lower RAUD values indicate greater attack ro-
bustness. We provide the RAUD for both LIMANS and specific ℓ∞-attacks in
Table 1, with ℓ2-attack results available in the supplementary material. Notably,
LIMANS attacks consistently evade detection, outperforming specific attacks
even at M = 10 and exhibiting robustness from M ≥ 500.

4.3 Transferability of the Adversarial Noise Space

In [33], it’s suggested that decision boundaries of classifiers trained on the same
dataset are close. This implies that if LIMANS learns an adversarial space aligned
with directions perpendicular to these boundaries, it can transfer effectively
between classifiers. Here, we empirically support this claim using Regularized-
LIMANS (see Algorithm 1). All attacks are ℓ∞-bounded perturbations.

CIFAR-10 Experiment. We select M = 150 and report the test fooling rates
in Table 2. The results validate our intuition: the adversarial directions derived
from both ResNet50 and VGG exhibit superior transfer performance compared
to state-of-the-art attacks across standard classifiers. Moreover, the efficacy of
the LIMANS attack on a target classifier isn’t contingent on its performance on
the source classifier, but rather on the characteristics of the target classifier. For
instance, the fooling rate of the LIMANS specific attack on ResNet is 91.3%.
However, when employing the learned LIMANS model to generate adversarial
perturbations to deceive MobileNet, its performance improves further to 96.0%.
This discrepancy arises because MobileNet is simpler and more susceptible to
attacks. Ultimately, through comparative analysis, we deduce that a model trained
on a robust classifier is more readily transferable to other classifiers.

Linear Modeling of the Adversarial Noise Space 13

Table 2: Performance of ℓ∞-attacks on CIFAR-10 (δ∞ = 8/255), in terms of FR,
where the left column lists the source classifiers and the first line presents the
target classifiers. The best results of transferability are marked in red bold style.
That of the specific attacks are shown in blue bold style.

MobileNet ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 63.3 100 54.6 25.1 1.2 2.4
VNI-FGSM 78.3 95.9 80.3 57.2 2.7 2.1

ResNet50 NAA 50.7 64.7 22.9 18.4 1.4 2.1
RAP 49.0 75.1 52.5 35.4 1.6 2.8
Ours 96.0 91.3 81.8 82.1 11.7 13.2

AutoAttack 62.5 43.0 44.0 100 2.7 2.7
VNI-FGSM 69.3 62.6 61.4 96.5 3.0 2.6

VGG NAA 42.3 14.5 1.8 71.6 1.6 1.2
RAP 46.5 39.5 40.9 73.8. 3.3 3.4
Ours 97.4 87.5 81.5 91.0 11.5 12.6

ImageNet Experiment. Due to memory limitations inherent to the large images
sizes, we only consider M = 100 which may be far from the actual dimension
of the underlying adversarial noise space. However, it still offers evidence of
transferability, as shown in Table 3. Nevertheless, in the case of robust classifiers,
the decision boundaries tend to be more intricate. This complexity results in the
inability to close the performance gap with AutoAttack for M = 100. Despite
this challenge, the LIMANS attack still demonstrates strong performance overall.

5 Conclusion

This work introduced LIMANS, a linear model of the adversarial noise space
designed to bridge the gap between universal and specific adversarial attacks.
This is achieved by framing attacks as specific linear combinations of universal
adversarial directions. Additionally, we proposed two implementations: Simple-
LIMANS, a parameter-free algorithm, and Regularized-LIMANS, which exhibits
greater efficiency when its regularization parameter is appropriately tuned.

Empirical findings demonstrated that adversarial examples generated by
LIMANS exhibit enhanced resilience against adversarial example detectors. Fur-
thermore, the study confirmed the transferability of the adversarial noise space
across various classifiers. Future research works involve extending its scope to
encompass for generating black-box attacks and learning adversarial directions
jointly across multiple DNNs. Such a step holds promise for enhancing its univer-
sality, efficiency, and alignment with the genuine adversarial threats encountered
in practical applications.

14 J. Patracone et al.

Table 3: Performance of ℓ∞-attacks on ImageNet (δ∞ = 4/255), in terms of FR,
where the left column lists the source classifiers and the first line presents the
target classifiers. The best results of transferability are marked in red bold font.
Those of the specific attacks are shown in blue bold font.

MobileNet ResNet18 DenseNet VGG R-r18 R-50-2
AutoAttack 40.30 100 35.76 34.90 1.80 1.34

ResNet18 VNI-FGSM 56.74 99.98 51.40 51.42 2.84 2.04
NAA 22.54 97.94 14.84 19.30 2.12 1.20
RAP 53.36 96.74 51.30 50.60 3.80 3.14

LIMANS 59.16 59.16 53.14 48.28 10.48 6.62
AutoAttack 47.94 40.06 32.62 100 2.34 1.42

VGG VNI-FGSM 57.98 53.96 42.88 99.84 2.76 2.24
NAA 19.62 14.92 12.18 79.96 2.18 1.40
RAP 53.14 53.12 42.68 95.68 3.48 2.84

LIMANS 57.68 54.14 50.04 51.62 10.68 6.24
AutoAttack 13.70 15.8 10.82 14.60 71.74 10.78

R-r18 VNI-FGSM 16.14 17.66 12.48 16.08 63.22 11.74
NAA 11.46 10.86 9.34 11.42 21.48 4.90
RAP 11.32 10.80 8.16 10.32 45.80 7.94

LIMANS 37.14 33.2 33.76 29.90 29.84 12.94
AutoAttack 20.14 22.76 17.36 19.44 15.42 59.02

R-50-2 VNI-FGSM 23.88 26.22 19.68 23.28 18.00 52.28
NAA 14.08 13.12 10.20 14.04 9.82 12.58
RAP 13.82 14.06 10.52 13.50 15.54 34.10

LIMANS 42.18 42.50 42.46 34.22 23.70 18.02

References

1. Baluja, S., Fischer, I.: Learning to attack: Adversarial transformation networks.
Proceedings of the AAAI Conference on Artificial Intelligence 32(1) (Apr 2018)

2. Benz, P., Zhang, C., Karjauv, A., Kweon, I.S.: Universal adversarial training with
class-wise perturbations. In: 2021 IEEE International Conference on Multimedia
and Expo (ICME). pp. 1–6. IEEE (2021)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57 (2017)

4. Chaubey, A., Agrawal, N., Barnwal, K., Guliani, K.K., Mehta, P.: Universal adver-
sarial perturbations: A survey. arXiv preprint arXiv:2005.08087 (2020)

5. Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N.,
Chiang, M., Mittal, P., Hein, M.: Robustbench: a standardized adversarial robustness
benchmark. In: NeurIPS, Datasets and Benchmarks Track (Round 2) (2021)

6. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: ICML. vol. 119, pp. 2206–2216 (2020)

7. Dohmatob, E., Guo, C., Goibert, M.: Origins of low-dimensional adversarial pertur-
bations. In: Ruiz, F., Dy, J., van de Meent, J.W. (eds.) Proceedings of The 26th

Linear Modeling of the Adversarial Noise Space 15

International Conference on Artificial Intelligence and Statistics. Proceedings of
Machine Learning Research, vol. 206, pp. 9221–9237. PMLR (25–27 Apr 2023)

8. Fawzi, A., Moosavi-Dezfooli, S.M., Frossard, P., Soatto, S.: Empirical study of the
topology and geometry of deep networks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 3762–3770 (2018)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9 (2015)

10. Gupta, K., Kaakai, F., Pesquet-Popescu, B., Pesquet, J.C., Malliaros, F.D.: Mul-
tivariate lipschitz analysis of the stability of neural networks. Frontiers in Signal
Processing 2 (2022)

11. Harder, P., Pfreundt, F.J., Keuper, M., Keuper, J.: Spectraldefense: Detecting
adversarial attacks on cnns in the fourier domain. In: 2021 International Joint
Conference on Neural Networks (IJCNN). pp. 1–8. IEEE (2021)

12. Hayes, J., Danezis, G.: Learning universal adversarial perturbations with generative
models. In: 2018 IEEE Security and Privacy Workshops (SPW). pp. 43–49. IEEE
(2018)

13. Hendrycks, D., Dietterich, T.G.: Benchmarking neural network robustness to com-
mon corruptions and perturbations. In: ICLR (2019)

14. Khrulkov, V., Oseledets, I.: Art of singular vectors and universal adversarial pertur-
bations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 8562–8570 (2018)

15. Kim, H.: Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950 (2020)

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. Communications of the ACM 60(6), 84–90 (2017)

17. Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)
18. Li, Y., Cheng, S., Su, H., Zhu, J.: Defense against adversarial attacks via controlling

gradient leaking on embedded manifolds. In: Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII
16. pp. 753–769. Springer (2020)

19. Lorenz, P., Strassel, D., Keuper, M., Keuper, J.: Is robustbench/autoattack a
suitable benchmark for adversarial robustness? (2021)

20. Lorenz, P., Strassel, D., Keuper, M., Keuper, J.: Is autoattack/autobench a suitable
benchmark for adversarial robustness? In: The AAAI-22 Workshop on Adversarial
Machine Learning and Beyond (2022)

21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings (2018)

22. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 1765–1773 (2017)

23. Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and accurate
method to fool deep neural networks. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016. pp. 2574–2582. IEEE Computer Society (2016)

24. Phan, H.: Pytorch_cifar10 (2021). https://doi.org/10.5281/zenodo.4431043
25. Qian, Z., Huang, K., Wang, Q.F., Zhang, X.Y.: A survey of robust adversarial

training in pattern recognition: Fundamental, theory, and methodologies. Pattern
Recognition 131, 108889 (2022)

https://doi.org/10.5281/zenodo.4431043
https://doi.org/10.5281/zenodo.4431043

16 J. Patracone et al.

26. Qin, Z., Fan, Y., Liu, Y., Shen, L., Zhang, Y., Wang, J., Wu, B.: Boosting the
transferability of adversarial attacks with reverse adversarial perturbation. In:
NeurIPS (2022)

27. Rakotomamonjy, A.: Direct optimization of the dictionary learning problem. IEEE
Transactions on Signal Processing 61(22), 5495–5506 (2013)

28. Sehwag, V., Mahloujifar, S., Handina, T., Dai, S., Xiang, C., Chiang, M., Mittal,
P.: Robust learning meets generative models: Can proxy distributions improve
adversarial robustness? In: ICLR (2022)

29. Shafahi, A., Najibi, M., Xu, Z., Dickerson, J., Davis, L.S., Goldstein, T.: Universal
adversarial training. Proceedings of the AAAI Conference on Artificial Intelligence
34(04), 5636–5643 (Apr 2020)

30. Sra, S.: Scalable nonconvex inexact proximal splitting. In: Pereira, F., Burges, C.J.C.,
Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing
Systems. vol. 25. Curran Associates, Inc. (2012)

31. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J.,
Fergus, R.: Intriguing properties of neural networks. In: Bengio, Y., LeCun, Y.
(eds.) 2nd International Conference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16 (2014)

32. Tabacof, P., Valle, E.: Exploring the space of adversarial images. In: 2016 interna-
tional joint conference on neural networks (IJCNN). pp. 426–433. IEEE (2016)

33. Tramèr, F., Papernot, N., Goodfellow, I.J., Boneh, D., Mcdaniel, P.: The space of
transferable adversarial examples. ArXiv abs/1704.03453 (2017)

34. Wang, X., He, K.: Enhancing the transferability of adversarial attacks through
variance tuning. In: Proceedings of the IEEE/CVF CVPR. pp. 1924–1933 (2021)

35. Xiao, C., Li, B., Zhu, J.Y., He, W., Liu, M., Song, D.: Generating adversarial
examples with adversarial networks. In: IJCNN. p. 3905–3911. IJCAI’18 (2018)

36. Xie, C., Zhang, Z., Zhou, Y., Bai, S., Wang, J., Ren, Z., Yuille, A.L.: Improving
transferability of adversarial examples with input diversity. In: Proceedings of the
IEEE/CVF CVPR. pp. 2730–2739 (2019)

37. Zhang, C., Benz, P., Imtiaz, T., Kweon, I.S.: CD-UAP: Class discriminative uni-
versal adversarial perturbation. Proceedings of the AAAI Conference on Artificial
Intelligence 34(04), 6754–6761 (Apr 2020)

38. Zhang, C., Benz, P., Lin, C., Karjauv, A., Wu, J., Kweon, I.S.: A survey on universal
adversarial attack. In: IJCAI-21. pp. 4687–4694 (8 2021), survey Track

39. Zhang, J., Wu, W., Huang, J.t., Huang, Y., Wang, W., Su, Y., Lyu, M.R.: Improving
adversarial transferability via neuron attribution-based attacks. In: IEEE/CVF
CVPR. pp. 14993–15002 (2022)

40. Zhang, Y., Tian, X., Li, Y., Wang, X., Tao, D.: Principal component adversarial
example. IEEE Transactions on Image Processing 29, 4804–4815 (2020)

Linear Modeling of the Adversarial Noise Space 17

A Adversarial Detector

Regarding the design of an adversarial examples’ detector, we followed the
guidelines proposed by [19] and [11]. In these two works, authors propose to use
a random forest binary classifier with at least 100 trees, in the Fourier domain
either of the input images or of the Fourier Features of Feature-Maps from the
images. Authors showed that by using either one of the inputs, the random forest
binary classifier is able to discriminate with high precision adversarial example
computed from state-of-the-art specific adversarial attacks on several complex
datasets such as CIFAR-10, CIFAR-100, ImageNet or Celeba. In order to lower as
much as possible the bias introduced by the detector, we chose to use a random
forest binary classifier with 300 trees in the Fourier domain of the input images.
Our choice has been confirmed by extensive experiments reported in Table 4.

Table 4: Confusion matrices of the detectors used to compute the RAUD table
from the main paper. All detectors have been trained on the same training dataset
as the one used in the training of LIMANS and the displayed values of computed
over the validation dataset, such that fair performances are considered. TN: True
Negative, FP: False Positive, FN: False Negative, TP: True Positive.

Detectors d dFGSM dPGD dAutoattack dLIMANS10

Confusion Matrix TN FP
FN TP

863 57
0 920

814 106
0 920

790 130
0 920

846 74
95 825

Accuracy 96.9 % 94.2 % 92.9 % 90.8 %
Precision 94.1 % 89.6 % 87.6 % 91.7 %

Indeed, Table 4 illustrates the confusion matrix of the detectors involved in
the RAUD table of the main paper. These detectors were trained on the same
dataset as LIMANS and the values displayed are computed over the validation
dataset. The RAUD metric for various adversarial attacks using the detector is
performed on the unseen test dataset, ensuring fairness.

We empirically observe highly effective detectors that discriminate real images
from adversarial ones with high accuracy, minimizing False-Positive and False-
Negative values. These robust performances instill confidence in utilizing these
detectors for the RAUD metric, crucial for evaluating the harmfulness and
transferability of adversarial attacks.

B Experimental Details

This section presents the details of the different implementations used in both
the Simple-LIMANS and Regularized-LIMANS’ experiments.

18 J. Patracone et al.

B.1 Simple-LIMANS

Modeling Details Simple-LIMANS algorithms operates a relaxation on the
definition of the adversarial noise. Given the original example x(i), Simple-
LIMANS consider its adversarial noise as ϵ(i) = Dv(i) + b the product of the
universal adversarial noise model D with its corresponding coding vector v(i), to
which is added the offset b universal to all LIMANS adversarial noises.

Algorithmic Parameters The learning rate is managed automatically using
a cheduler to reduce the learning rate when the loss plateaus. Initially, a high
learning rate is used to avoid poor local minima caused by random initialization.
As optimization progresses, the learning rate decreases, allowing the parameters to
converge to a better minimum. The parameters of the scheduler are: patience=40,
factor=0.1, and threshold=0.1.

All Simple-LIMANS experiments were optimized using the Adam optimizer.
Among several optimizers tested, Adam was found to be the most effective, as
illustrated in Figure 5. While similar performance levels can be achieved with
alternative optimizers like RMSProp, the Adam optimizer or one of its variants
emerges as a compelling optimization choice overall.

As depicted in Figure 5, the batch size B is not a highly sensitive hyper-
parameter when using Simple-LIMANS. We observed that varying batch sizes
often led to similar performance outcomes, with differences primarily affecting
computational time. Accordingly, we set the batch size B to 256 during training
and 64 during inference in our experiments.

0 50 100 150 200
Minibatch optimizations

2000

3000

4000

5000

6000

7000

Tr
ai

ni
ng

 lo
ss

ADAM
RMSPROP
ADAGRAD
ADAMAX
NADAM

0 50 100 150 200
Minibatch optimizations

2000

3000

4000

5000

6000

7000

Tr
ai

ni
ng

 lo
ss

B = 32
B = 64
B = 124
B = 256
B = 512

Fig. 5: Evolution of LIMANS10 training loss according to (left) different optimizers
and (right) different batch sizes B using the Simple-LIMANS algorithm on the
standard classifier under the ℓ∞ norm.

B.2 Regularized-LIMANS

Hyperparameters Figure 6 illustrates the influence of the hyperparameter λ
and the number of atoms M on attack performance. Increasing M appropriately
leads to improved performance, consistent with the findings presented in the

Linear Modeling of the Adversarial Noise Space 19

paper. In our experiments, to strike a balance between attack performance and
memory constraints, we choose M = 150 for CIFAR-10 and M = 100 for ImageNet.
Moreover, for p = ∞, setting λ = 1 yields optimal performance, while λ = 0.1
is suitable for p = 2. This conclusion holds true when extrapolated to other
classifiers, as depicted in Table 5.

Algorithmic Parameters The learning rate ρ is fixed to 0.001. In the training
phase, we set the number of iterations to MAXEPOCH=1000 while, in the
validation and the test phases, MAXEPOCH is set 150 when p = 2 and 300 when
p = ∞.

Fig. 6: Performance of LIMANS (left) ℓ∞-attacks and (right) ℓ2-attacks on CIFAR-
10 when attacking VGG, under different settings of hyperparameter in Regularized
LIMANS λ, and different number of atoms M.

Table 5: Performance of LIMANS attacks on CIFAR-10, in terms of FR, when
the number of atoms M = 150. The best results are marked in red bold style.

ℓ∞-attack ℓ2-attack

λ
Classifiers VGG MobileNet R-R18 VGG MobileNet R-R18

0.1 73.2 85.3 15.8 71.7 95.4 17.6
1.0 91.0 97.3 25.3 45.4 49.6 12.8
10 46.1 91.7 19.9 13.6 24.4 10.3

Classifiers To assess the transferability of the adversarial noise space, we con-
ducted experiments on CIFAR-10 using five vanilla DNNs (MobileNet, Inception,
ResNet, DenseNet, VGG) and two robust DNNs (Robust ResNet18, Robust
WideResNet-34-10). Their respective accuracies are 94.00% (MobileNet), 94.10%
(Inception), 93.2% (ResNet), 92.8% (DenseNet), 92.1% (VGG), 82.3% (Robust
ResNet18), and 85.1% (Robust WideResNet-34-10). For ImageNet, Inception

20 J. Patracone et al.

was excluded due to its different input size. All classifiers were obtained from
the PyTorch model zoo and achieved accuracies of 70.95% (MobileNet), 68.20%
(ResNet), 73.65% (DenseNet), 67.60% (VGG), 51.25% (Robust ResNet18), and
66.55% (Robust WideResNet-50-2). In our experiments, each DNN served as the
source classifier to learn the adversarial noise space, and then crafted adversarial
perturbations in this learned space to deceive the other classifiers, which acted
as the target classifiers.

Linear Modeling of the Adversarial Noise Space 21

C Additional Results: “Insights and Attack Performance”

C.1 Visualisation of Adversarial Directions

By linearly modeling adversarial noise space, we find that LIMANS’ directions
hold crucial information for deceiving classifiers, akin to capturing semantic
essence within the classification space. Additional experiments on the MNIST
dataset further illustrate this observation. We present in Figure 7 the M = 10
adversarial directions learned to fool a LeNet classifier achieving more than 98.8%
of test accuracy.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

(a) LIMANS-ℓ2
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

(b) LIMANS-ℓ∞

Fig. 7: Visualization of the M = 10 universal adversarial directions on MNIST.

In addition to these visually interesting universal directions, we report in Fig.8
how LIMANS operates to specifically craft adversarial perturbations. LIMANS
generates significantly more compelling adversarial perturbations compared to
state-of-the-art specific adversarial perturbations, which are essentially random.
LIMANS strategically targets the most sensitive areas to deceive the classifiers,
rendering its adversarial attack far more realistic than state-of-the-art specific
adversarial attacks.

LIMANS Noise Predicted: 0 Predicted: 7

(a) LIMANS adversarial perturbation and
example

PGD Noise Predicted: 7 Predicted: 2

(b) PGD adversarial perturbation and ex-
ample

Fig. 8: Examples of ℓ2 adversarial perturbations produced by LIMANS and PGD
on the MNIST dataset for a LeNet classifier achieving more than 98.8% of test
accuracy.

22 J. Patracone et al.

C.2 Impact of the Number of Directions

We present here the performance of the LIMANS attacks as the number of atoms
M increases from 1 to 4000. It’s worth noting that both the performance on
training data, depicted in Figure 10, and on test data, illustrated in Figure 9,
indicate that LIMANS attacks are capable of bridging the gap between universal
attacks and specific attacks.

1 10 100 1000
Number of atoms M (log scale)

0
10
20
30
40
50
60
70
80
90

100

Te
st

 F
oo

lin
g

R
at

e

1 2
5

10
20

50
100

200
500 1k 2k 4k

Standard Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

1 10 100 1000
Number of atoms M (log scale)

0

10

20

Te
st

 F
oo

lin
g

R
at

e

1 2
5

10
20

50

100

200
500

1k 2k 4k

Robust Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

1 10 100 1000
Number of atoms M (log scale)

0
10
20
30
40
50
60
70
80
90

100

Te
st

 F
oo

lin
g

R
at

e

1

2 5 10
20

50

100

200
500 1k 2k 4k

Standard Classifier

LIMANS
AUTOATTACK
PGD
FGSM
FFGSM
MIFGSM
CW_UAP
UAP_PGD
FAST_UAP

1 10 100 1000
Number of atoms M (log scale)

0

10

20

30

40

50

Te
st

 F
oo

lin
g

R
at

e

1 2
5 10

20
50

100
200

500 1k 2k 4k

Robust Classifier

LIMANS
AUTOATTACK
PGD
FGSM
FFGSM
MIFGSM
CW_UAP
UAP_PGD
FAST_UAP

Fig. 9: Evolution of LIMANS’ test fooling rate according to the number of
atoms M. Both specific and universal adversarial attack baselines are shown.
The problem is solved under the ℓ2 norm constraint (first line) and ℓ∞ norm
constraint (second line) on the standard classifier (left figure) and the robust
classifier (right figure) on CIFAR-10 using Simple-LIMANS. On average over 5
random seeds the fooling rates vary around 0.4% of FR for the standard model
and around 0.1% of FR for the robust model, errorbars are plotted but so tiny,
are invisible.

Linear Modeling of the Adversarial Noise Space 23

1 10 100 1000
Number of atoms M (log scale)

0
10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

 F
oo

lin
g

ra
te

1 2
5

10
20

50

100
200

500 1k 2k 4k

Standard Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

1 10 100 1000
Number of atoms M (log scale)

0

10

20

Tr
ai

ni
ng

 F
oo

lin
g

ra
te

1 2
5

10
20

50
100

200
500

1k 2k 4k

Robust Classifier

LIMANS
AUTOATTACK
PGD
CW
UAP_PGD
FAST_UAP
CW_UAP

1 10 100 1000
Number of atoms M (log scale)

0
10
20
30
40
50
60
70
80
90

100

Tr
ai

ni
ng

 F
oo

lin
g

ra
te

1
2 5 10

20
50

100
200

500 1k 2k 4k

Standard Classifier

LIMANS
AUTOATTACK
PGD
FGSM
FFGSM
MIFGSM
CW_UAP
UAP_PGD
FAST_UAP

1 10 100 1000
Number of atoms M (log scale)

0

10

20

30

40

Tr
ai

ni
ng

 F
oo

lin
g

ra
te

1 2
5 10 20

50 100 200 500 1k 2k 4k

Robust Classifier

LIMANS
AUTOATTACK
PGD
FGSM
FFGSM
MIFGSM
CW_UAP
UAP_PGD
FAST_UAP

Fig. 10: Evolution of LIMANS’ training fooling rate according to the number
of atoms M. Both specific and universal adversarial attack baselines are shown.
The problem is solved under the ℓ2 norm constraint (first line) and ℓ∞ norm
constraint (second line) on the standard classifier (left figure) and the robust
classifier (right figure) on CIFAR-10 using Simple-LIMANS. On average over 5
random seeds the fooling rates vary around 0.4% of FR for the standard model
and around 0.1% of FR for the robust model, error bars are plotted but so tiny,
are invisible.

C.3 Robustness of the Attack

Table 6 and Table 7 display the RAUD of Simple-LIMANS and the specific
baselines for both the ℓ∞ and ℓ2 norms, considering various adversarial example
detectors d. The RAUD values are accompanied by their standard deviation over
5 different random seeds. These performances are reported for both the standard
and robust classifier on the CIFAR-10 dataset.

24 J. Patracone et al.

Table 6: Robustness performance of the LIMANS ℓ∞-attack (δ∞ = 8/255) in
terms of RAUD on the CIFAR-10 test data and against the attack detectors
plugged in both standard classifier (S.C.) and robust classifier (R.C.). The
smaller the RAUD, the more robust the adversarial attack is. The best
performances are marked in bold red.
Detectors d dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1
FGSM 91.1 ± 0.0 85.1 ± 0.0 91.1 ± 0 85.1 ± 0.0 89.3 ± 0.0 79.5 ± 0.0
PGD 91.0 ± 0.0 84.9 ± 0.1 91.0 ± 0.0 85.0 ± 0.0 80.7 ± 0.5 73.3 ± 0.3
Autoattack 91.0 ± 0.0 85.0 ± 0.0 91.1 ± 0.0 85.0 ± 0.0 78.2 ± 0.3 71.5 ± 0.3
LIMANS10 78.3 ± 2.4 79.6 ± 0.0 81.7 ± 2.0 8.0 ± 0.0 86.4 ± 1.6 79.5 ± 0.1
LIMANS500 26.3 ± 0.3 71.3 ± 0.1 32.1 ± 0.4 73.2 ± 0.2 36.5 ± 3.1 69.4 ± 0.2
LIMANS1000 24.7 ± 0.9 70.4 ± 0.2 31.6 ± 1.1 72.4 ± 0.1 36.9 ± 4.6 68.5 ± 0.2
LIMANS4000 23.7 ± 0.5 69.8 ± 0.0 30.8 ± 0.9 72.9 ± 0.3 35.6 ± 2.2 68.2 ± 0.1

Table 7: Robustness performance of the LIMANS ℓ2-attack (δ2 = 0.5) in terms
of RAUD on the CIFAR-10 test data and against the attack detectors plugged in
both standard classifier (S.C.) and robust classifier (R.C.). The smaller the
RAUD, the more robust the adversarial attack is. The best performance
is marked in red bold font.
Detectors d dPGD dAutoattack dLIMANS10

Classifiers f S.C. R.C S.C. R.C S.C. R.C
SA 91.1 85.1 91.1 85.1 91.1 85.1
PGD 64.0 ± 1.2 82.4 ± 0.0 65.3 ± 0.6 81.8 ± 0.1 42.9 ± 0.6 80.1 ± 0.0
Autoattack 63.1 ± 1.1 82.19 ± 0.1 65.8 ± 0.6 81.1 ± 0.2 42.1 ± 0.3 79.4 ± 0.0
LIMANS10 83.5 ± 0.5 87.4 ± 0.1 82.9 ± 0.4 88.1 ± 0.0 86.9 ± 0.9 87.6 ± 0.1
LIMANS500 62.9 ± 0.2 84.0 ± 0.4 64.7 ± 1.0 83.8 ± 0.3 51.7 ± 1.3 81.7 ± 0.1
LIMANS1000 63.7 ± 0.6 82.7 ± 0.3 63.6 ± 0.9 82.6 ± 0.2 46.8 ± 0.7 80.1 ± 0.1
LIMANS4000 62.6 ± 1.2 82.16 ± 0.2 62.2 ± 0.6 82.6 ± 0.3 46.9 ± 0.2 80.0 ± 0.2

Linear Modeling of the Adversarial Noise Space 25

D Additional results: “Transferability of the Adversarial
Noise Space”

In this section, we present additional findings concerning the transferability of
the adversarial noise space. Consistent with our paper, the learned space under
LIMANS ℓ∞-attack demonstrates robust transferability across different classifiers,
as corroborated by the results in Table 9 (part 1) and Table 8 (part 2), as well as
Table 11. Additionally, the adversarial noise space acquired using the LIMANS
ℓ2-attack also exhibits transferability, as depicted in Table 10.

Table 8: Transferability performance of the LIMANS ℓ∞-attacks on CIFAR-10
(ϵ = 8/255), in terms of fooling rates (FR). The best transferable results are
marked in red bold font and the best specific attacking results are marked in
black bold font: Part 2.

MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 17.6 17.9 18.0 18.5 19.1 27.7 39.4

UAP 12.4 9.9 6.6 5.3 4.4 1.7 1.3
UAPPGD 27.0 21.5 12.9 11.7 13.1 2.5 2.6
TI-FGSM 7.9 6.6 6.8 7.7 8.3 17.2 21.2

VMI-FGSM 26.8 25.2 26.1 24.3 26 26.3 32.3
R-wrn-34-10 VNI-FGSM 30.0 27.7 28.6 26.3 27.4 26.7 32.1

NAA 13.7 11.3 10.1 10.5 11.4 9.7 15.5
RAP 11.5 9.4 7.7 7.7 8.4 1.5 19.5
Ours 84.9 76.6 72.8 68.9 64.0 23.2 21.6

26 J. Patracone et al.

Table 9: Transferability performance of the LIMANS ℓ∞-attacks on CIFAR-10
(ϵ = 8/255), in terms of fooling rates (FR). The best transferable results are
marked in red bold font and the best specific attacking results are marked in
black bold font: Part 1.

MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 100 87.1 37.2 32.8 22.4 1.7 1.5

UAP 47.3 36.1 9.3 8.3 8.7 1.3 0.8
UAPPGD 86.2 56.1 20.5 19 21.3 1.6 1.5
TI-FGSM 87.2 25.2 25.9 29.1 16.1 2.1 2.0

VMI-FGSM 100 87.3 53.1 49.8 38.9 2.2 2.5
MobileNet VNI-FGSM 100 88.1 54.8 53.1 40.7 2.4 2.9

NAA 72.2 25.3 6.8 5.9 6.4 1.3 1.0
RAP 86.7 60.3 38.5 35.7 25.8 3.0 1.6
Ours 97.3 92.2 73.6 66.4 67.7 10.2 10.7

AutoAttack 54.7 100 14.7 12.9 12.0 1.2 1.1
UAP 39.2 32.9 9.3 9.7 9.4 1.5 1.1

UAPPGD 73.9 75.5 26.3 23.8 27.3 2.2 1.5
TI-FGSM 19.7 60.2 19.8 21 11.4 2.2 1.5

VMI-FGSM 69.8 86.1 40.8 38.3 31.3 2.6 1.6
Inception VNI-FGSM 75.5 89.5 44.4 42.4 36.3 3.2 2.3

NAA 38.7 70.5 8.4 8.1 9.2 1.1 1.5
RAP 61.9 90.2 42.0 41.7 30.3 2.3 2.7
Ours 98 95.1 79.6 73.9 75.8 10.7 10.8

AutoAttack 63.3 52.6 100 54.6 25.1 1.2 2.4
UAP 31.4 23.6 12.1 12.5 11.2 1.3 1.7

UAPPGD 63.3 49.4 39.4 35.1 26.1 1.1 2.3
TI-FGSM 18.4 17.1 74.0 38.5 20.4 2.2 3.0

VMI-FGSM 74.9 75.3 96.0 78.1 53.5 2.1 3.2
ResNet50 VNI-FGSM 78.3 76.9 95.9 80.3 57.2 2.7 2.1

NAA 50.7 38.6 64.7 22.9 18.4 1.4 2.1
RAP 49.0 45.7 75.1 52.5 35.4 1.6 2.8
Ours 96.0 92.9 91.3 81.8 82.1 11.7 13.2

AutoAttack 56.9 51.6 48.8 100 21.8 2.1 2.0
UAP 27.6 20.6 10.6 12.8 11.4 1.6 1.4

UAPPGD 61.1 49.9 29.3 47.4 27.3 2.7 2.1
TI-FGSM 17.4 15.8 26.3 65.2 17 2.9 2.3

VMI-FGSM 73.7 71.8 77.2 93.1 47.9 3.3 3.7
DenseNet VNI-FGSM 78.1 76.2 79.5 94.0 53.3 3.5 4.2

NAA 37.2 31.1 23.7 74.9 12.5 1.2 1.5
RAP 47.8 43.5 48.7 75.9 35.6 3.2 3.5
Ours 96.7 93.5 88.4 85.5 82.7 12.3 13.4

AutoAttack 62.5 58.0 43.0 44.0 100 2.7 2.7
UAP 22.0 18.4 10.2 10.2 10.0 1.1 1.3

UAPPGD 63.6 55.9 27.6 29.4 41.9 3.1 2.1
TI-FGSM 19.7 16.7 25.6 27.6 74.4 3.7 2.2

VMI-FGSM 66.2 64.2 57.5 56.9 96.5 3.0 2.6
VGG VNI-FGSM 69.3 68 62.6 61.4 96.5 3.0 2.6

NAA 42.3 38.3 14.5 1.8 71.6 1.6 1.2
RAP 46.5 44.5 39.5 40.9 73.8. 3.3 3.4
Ours 97.4 95.1 87.5 81.5 91.0 11.5 12.6

AutoAttack 17.5 15.7 17.2 15.6 17.5 44.3 23.4
UAP 14.5 9.5 7.1 6.4 7.6 1.9 2.6

UAPPGD 18.6 13.3 9.7 8.6 10.5 3.1 3.5
TI-FGSM 8.4 5.5 8.2 7.8 8.6 26.2 13.1

VMI-FGSM 24 22.9 24.2 21.9 24.8 38 22.7
R-r18 VNI-FGSM 27.1 23.1 25.4 23.8 25.6 38.1 22.9

NAA 16.2 11.5 11.2 10.4 10.4 18.7 7.2
RAP 10.9 8.4 7.9 8.9 9.7 23.8 12.2
Ours 81.3 73.2 71.7 68.3 61.7 25.3 21.6

Linear Modeling of the Adversarial Noise Space 27

Table 10: Transferability performance of the LIMANS ℓ2-attacks on CIFAR-10
(ϵ = 0.5), in terms of fooling rates (FR). The best transferable results are marked
in red bold font and the best specific attacking results are marked in black bold
font.

MobileNet Inception ResNet50 DenseNet VGG R-r18 R-wrn-34-10
AutoAttack 100 50.20 14.20 13.30 8.20 0.90 0.50

UAP 7.50 5.20 3.00 2.50 2.40 0.30 0.40
UAPPGD 37.90 15.20 2.00 1.10 0.90 0.30 0.20

CW 97.50 11.00 4.20 3.20 2.40 0.30 0.00
MobileNet RAP 67.30 11.20 4.20 3.90 2.60 0.50 0.10

Ours 95.40 91.50 61.70 59.30 51.50 4.60 5.00
AutoAttack 32.80 100 6.60 7.90 5.50 0.50 0.50

UAP 9.80 7.50 2.50 3.50 2.90 0.20 0.10
UAPPGD 26.90 16.70 1.30 2.30 2.00 0.30 0.10

CW 16.30 82.80 5.00 5.20 3.70 0.30 0.00
Inception RAP 13.60 43.50 3.50 3.60 2.70 0.40 0.30

Ours 94.60 94.10 64.30 63.90 57.20 5.10 5.20
AutoAttack 31.00 23.40 99.70 26.10 10.00 1.20 0.70

UAP 5.10 3.80 2.40 1.90 2.80 0.50 0.30
UAPPGD 4.10 3.20 2.20 2.30 2.20 0.40 0.20

CW 13.50 9.80 82.40 13.10 6.10 0.50 0.40
ResNet50 RAP 10.20 8.60 33.00 8.60 4.90 0.40 0.30

Ours 92.60 87.50 78.10 71.70 61.70 7.90 7.50
AutoAttack 32.60 25.20 27.30 99.50 10.20 0.50 0.50

UAP 4.90 3.70 2.60 3.30 1.90 0.20 0.20
UAPPGD 5.00 4.50 3.20 3.70 2.10 0.20 0.20

CW 14.60 13.70 14.80 80.00 6.40 0.40 0.30
DenseNet RAP 8.00 7.30 7.70 29.00 4.50 0.30 0.30

Ours 91.10 87.60 74.00 74.10 62.70 8.40 7.70
AutoAttack 32.00 28.20 19.50 21.10 98.90 0.80 0.60

UAP 4.70 3.80 2.20 2.70 2.00 0.50 0.40
UAPPGD 4.80 5.60 2.00 2.70 2.80 0.40 0.40

CW 10.00 8.20 5.70 7.40 79.10 0.60 0.30
VGG RAP 8.80 7.10 5.20 6.50 32.10 0.30 0.50

Ours 94.20 89.00 74.80 71.00 71.70 8.00 7.10
AutoAttack 6.70 8.30 8.00 8.50 9.60 24.60 11.00

UAP 3.40 3.10 2.50 2.30 1.80 0.50 0.40
UAPPGD 2.70 2.10 2.00 1.70 2.60 0.30 0.10

CW 9.50 11.60 10.60 10.00 11.60 22.90 3.90
R-r18 RAP 8.70 7.70 7.60 8.10 9.60 10.70 4.50

Ours 58.70 53.80 50.30 50.70 41.80 17.60 14.60
AutoAttack 7.70 7.80 8.20 7.80 8.90 15.20 22.50

UAP 3.00 3.10 2.40 2.90 2.60 0.90 0.40
UAPPGD 2.90 2.80 2.20 1.00 1.60 0.70 0.60

CW 10.30 9.10 13.00 10.60 10.40 8.80 21.20
R-wrn-34-10 RAP 8.10 7.30 8.10 7.60 7.70 7.10 9.90

Ours 59.10 54.80 51.80 50.00 42.50 17.00 14.70

28 J. Patracone et al.

Table 11: Transferability performance of the LIMANS ℓ∞-attacks on ImageNet
(ϵ = 4/255), in terms of fooling rates. The best transferable results are marked in
red bold font, and the best specific attacking results are marked in black bold
font.

MobileNet ResNet18 DenseNet VGG R-r18 R-50-2
AutoAttack 100 26.38 20.44 26.94 1.64 1.24

UAP 48.48 11.5 10.46 17.28 1.8 0.84
UAPPGD 69.94 18.04 14.34 22.34 2.72 1.56
TI-FGSM 99.74 36.98 31.66 31.24 3.2 2.56

VMI-FGSM 100 44.84 37.92 42.92 2.92 2.04
MobileNet VNI-FGSM 99.98 44.64 36.54 43.62 2.88 2.00

NAA 84.56 15.1 11.72 16.88 2.1 1.2
RAP 96.52 54.58 47.24 49.16 3.72 3.16
Ours 75.24 50.06 46.94 44.34 10.02 5.62

AutoAttack 40.3 100 35.76 34.9 1.8 1.34
UAP 13.34 11.3 9.00 11.72 1.36 0.86

UAPPGD 25.3 47.22 18.44 23.26 2.5 1.44
TI-FGSM 32.06 99.84 31.38 31.66 2.98 2.8

VMI-FGSM 56.5 100 51.78 50.2 2.9 2.04
ResNet18 VNI-FGSM 56.74 99.98 51.4 51.42 2.84 2.04

NAA 22.54 97.94 14.84 19.3 2.12 1.2
RAP 53.36 96.74 51.30 50.60 3.80 3.14
Ours 59.16 59.16 53.14 48.28 10.48 6.62

AutoAttack 37.72 40.4 100 30.22 1.8 1.3
UAP 12.76 9.94 9.8 11.42 1.24 0.92

UAPPGD 22.72 20.7 40.04 20.18 2.48 1.28
TI-FGSM 30.1 35.56 99.66 27 3.12 2.32

VMI-FGSM 52.22 55.44 99.98 44.82 2.9 2.06
DenseNet VNI-FGSM 53.88 56.9 99.98 46.16 2.64 2.1

NAA 24.22 25.68 98.34 21.38 1.34 1.42
RAP 48.16 54.12 96.76 42.00 3.12 3.30
Ours 58.86 56.9 57.26 47.74 11.3 7.32

AutoAttack 47.94 40.06 32.62 100 2.34 1.42
UAP 13.34 9.8 8.82 13.6 1.34 0.78

UAPPGD 24.42 23.16 18.12 46.26 2.54 1.6
TI-FGSM 33.2 38.26 29.3 99.4 2.96 2.28

VMI-FGSM 57.52 53.46 43.76 99.86 2.9 2.2
VGG VNI-FGSM 57.98 53.96 42.88 99.84 2.76 2.24

NAA 19.62 14.92 12.18 79.96 2.18 1.4
RAP 53.14 53.12 42.68 95.68 3.48 2.84
Ours 57.68 54.14 50.04 51.62 10.68 6.24

AutoAttack 13.7 15.8 10.82 14.6 71.74 10.78
UAP 11.52 9.32 8.46 10.90 1.44 1.16

UAPPGD 14.00 12.34 11.20 13.56 3.14 1.66
TI-FGSM 11.88 13.42 10.08 11.02 54.46 10.14

VMI-FGSM 17.00 17.80 12.12 16.08 64.98 11.94
R-r18 VNI-FGSM 16.14 17.66 12.48 16.08 63.22 11.74

NAA 11.46 10.86 9.34 11.42 21.48 4.9
RAP 11.32 10.80 8.16 10.32 45.80 7.94
Ours 37.14 33.2 33.76 29.90 29.84 12.94

AutoAttack 20.14 22.76 17.36 19.44 15.42 59.02
UAP 9.88 7.60 6.96 8.62 1.84 1.24

UAPPGD 14.54 12.56 10.92 14.36 2.16 1.38
TI-FGSM 14.16 16.34 12.68 13.68 17.16 43.66

VMI-FGSM 24.22 26.66 20.12 23.86 17.82 54.56
R-50-2 VNI-FGSM 23.88 26.22 19.68 23.28 18.00 52.28

NAA 14.08 13.12 10.20 14.04 9.82 12.58
RAP 13.82 14.06 10.52 13.5 15.54 34.1
Ours 42.18 42.5 42.46 34.22 23.7 18.02

	Linear Modeling of the Adversarial Noise Space

