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Abstract

In recent years, bilevel approaches have become very popular to efficiently estimate high-
dimensional hyperparameters of machine learning models. However, to date, binary
parameters are handled by continuous relaxation and rounding strategies, which could
lead to inconsistent solutions. In this context, we tackle the challenging optimization of
mixed-binary hyperparameters by resorting to an equivalent continuous bilevel reformulation
based on an appropriate penalty term. We propose an algorithmic framework that, under
suitable assumptions, is guaranteed to provide mixed-binary solutions. Moreover, the
generality of the method allows to safely use existing continuous bilevel solvers within the
proposed framework. We evaluate the performance of our approach for two specific machine
learning problems, i.e., the estimation of the group-sparsity structure in regression problems
and the data distillation problem. The reported results clearly show that our method can
outperform state-of-the-art approaches based on relaxation and rounding.

1 Introduction

Nowadays, machine learning systems tend to incorporate an increasing number of hyperparameters with
the purpose of improving the overall performance of learning tasks and achieving a higher flexibility. Then,
optimizing such high-dimensional hyperparameters becomes a a crucial step for devising an efficient and fully
parameter-free machine learning systems. In recent years, bilevel approaches to hyperparameter optimization
have become very popular as an effective way to estimate high-dimensional hyperparameters (Arbel &
Mairal, 2022; Bae & Grosse, 2020; Bennett et al., 2006; Franceschi et al., 2018; Grazzi et al., 2020; Maclaurin
et al., 2015; Pedregosa, 2016). On the other hand, in many circumstances, binary hyperparameters are
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included in the model to allow the pruning of the irrelevant variables or the discovery of sparsity structures.
Interesting examples are given by the pruning of large-scale deep learning models (Zhang et al., 2022), the
identification of the group-sparsity structures in regression problems (Frecon et al., 2018; Wang et al., 2020),
and learning the discrete structure of a graph neural networks (Franceschi et al., 2019). For these cases, the
usual optimization approach is that of relaxing the respective parameter over the unit interval [0, 1], solve
the continuous optimization problem, and then rounding the solution so to get a binary output. This is
essentially a heuristic, which overcomes the challenge of dealing with integer variables, but does not offer any
theoretical guarantees.

The aim of the present work is to provide a more principled way of approaching mixed-binary hyperparameter
optimization.

Related works. In the context of machine learning, bilevel optimization problems with binary variables arise
in a number of situations. In (Frecon et al., 2018) the estimation of group-sparsity structures in multi-task
regression is addressed by a mixed-binary bilevel optimization model, which is handled by a continuous
relaxation and approximation of the problem. The output of the optimization procedure is a vector of
continuous variables, which are then rounded to the closest binary values, so to provide the final grouping
of the features. In Section 5, we tackle this same problem and show the advantage of our approach. In
the work (Zhang et al., 2022), a new model pruning, based on bilevel optimization, is proposed, where the
upper level variable is a binary mask. The related iterative algorithm performs a gradient descent step
on the continuous relaxation of the problem followed by a projection step onto a discrete set, which is
indeed a hard-thresholding operation. No convergence guarantees are provided. In (Borsos et al., 2024),
the authors present a general framework for coreset construction by formulating coreset selection as a
cardinality-constrained bilevel optimization problem, solved using a tailored algorithm that combines greedy
forward selection and first-order methods. The proposed approach is model-agnostic and applicable to
any twice-differentiable model, including neural networks. A drawback is that the coreset weights must be
determined for each selection step, which involves an iterative process. To streamline this, binary weights
(i.e., unweighted coreset) are also used and a mixed-binary bilevel optimization problem is defined, thus
eliminating the weight optimization step. The authors only report a theoretical analysis of the algorithm for
the continuous-weights case. In another recent paper (Zhou et al., 2024) some deep learning techniques are
developed to tackle a bilevel problem with a binary tender, i.e., a problem where the upper and lower levels
are connected through binary variables. A neural network is trained to approximate the optimal value of the
lower-level problem as a function of the binary tender. This enables a single-level reformulation of the bilevel
program using a mixed-integer representation of the value function. Additionally, a comparative analysis is
conducted between two neural network architectures—general neural networks and novel input-supermodular
neural networks—to assess their representational capacities. To handle high-dimensional bilevel programs, an
enhanced sampling method is introduced to generate higher-quality samples, along with an iterative process
to refine solutions.

Beyond the machine learning literature, there are a number of works related to mixed-integer bilevel
programming; see, e.g., Section 5.3 of the recent survey (Kleinert et al., 2021b). An important drawback
one needs to take into account when applying those methods to hyperparameter optimization problems are
however limited scalability. Common approaches like, e.g., the outer-approximation-based method in (Kleinert
et al., 2021a), or the algorithm proposed in (Mitsos, 2010), which requires the global solution of a a significant
number of mixed-integer nonlinear programs have indeed a prohibitive cost when the dimensionality grows.
Furthermore, it should be noted that they aim to achieve global optimality—an overly ambitious goal in the
context of machine learning applications.

Contributions and outline. In this paper, we analyze more carefully the mixed-binary setting and propose
a relax and penalize method, which produces a mixed-binary output and relies on improved mathematical
grounds. More precisely, we present in Section 2 a general mixed continuous-binary bilevel problem and show
in Section 3 that it is equivalent, in terms of global minima and minimizers, to a fully continuous and penalized
optimization problem. Next, in Section 4, we propose an algorithmic framework, which consists of iteratively
solving a sequence of continuous and penalized problems which, under suitable assumptions, are guaranteed
to provide mixed-binary local solutions. The performance of the proposed approach is quantitatively assessed
on the two machine-learning applications of the group structure estimation in the group lasso problem and the
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data distillation task. Numerical experiments are reported in Section 5 and show how the relax and penalize
method outperforms state-of-the-art approaches based on relaxation and rounding. Finally, conclusions and
perspectives are drawn in Section 6.

Notation. For every integer n ≥ 1, [n] denotes the set {1, . . . , n}. We denote by ∥·∥ the Euclidean norm
in Rn and by ∥·∥∞ the infinity norm, meaning ∥x∥∞ = max1≤u≤n|xi|. If x ∈ Rn and ρ > 0 we denote by
Bρ(x) the closed ball in Rn with center x and radius ρ, i.e., Bρ(x) = {x′ ∈ Rn : ∥x′ − x∥ ≤ ρ}. The standard
(n − 1)-simplex is denoted by ∆n−1 = {x ∈ Rn

+ :
∑n

i=1 xi = 1}. Moreover, ⊙ is the Hadamard product,
meaning the component-wise multiplication of vectors in Rd. If Ψ: Rn → R is a continuous function and
Ω ⊆ Rn, we denote by argminΩ Ψ the set of minimizers of Ψ over Ω and with a slight abuse of notation also
the minimizer itself when it is unique.

2 Problem statement

We consider mixed-binary bilevel problems of the form

min
λ,θ

F (λ, θ, w(λ, θ)) (1a)

s.t. λ ∈ Λ ⊆ Rm, θ ∈ Θbin ⊆ {0, 1}p, (1b)
w(λ, θ) = argmin

w∈W (λ,θ)
f(λ, θ, w), (1c)

where F, f : Rm ×Rp ×Rd → R and W (λ, θ) ⊆ Rd. We note that the lower-level problem is supposed to admit
a unique solution and that the hyperparameters λ and θ are continuous and binary variables, respectively. In
the context of machine learning problems, the functions F and f often are the loss over a validation set and
training set, respectively. We will provide major applications of this situation in Section 5.

In the remainder of this paper we assume that the binary set Θbin is embedded in a larger continuous set Θ
and that the lower-level problem admits a unique solution also for θ ∈ Θ. Then, we can consider the following
and more compact formulation

min
(λ,θ)∈Λ×Θbin

G(λ, θ) (2)

of the above problem, where we set G(λ, θ) := F (λ, θ, w(λ, θ)) and require that the following assumption
holds.
Assumption 1.

(i) Λ ⊆ Rm is nonempty and compact.

(ii) Θbin := Θ ∩ {0, 1}p ̸= ∅, where Θ ⊆ [0, 1]p is convex and compact and Θ \ Θbin ̸= ∅.

(iii) G : Λ × Θ → R is continuous.

(iv) For all λ ∈ Λ, the map G(λ, ·) is Lipschitz continuous with constant L > 0 on Θ.

Assumption 1 can be met with appropriate hypotheses on the functions F and f . For instance, a sufficient
condition for (iii) is that the functions F and f are jointly continuous, that the function f(λ, θ, ·) is strongly
convex with a modulus of convexity which is uniform for every (λ, θ), and that the set-valued mapping
(λ, θ) 7→ W (λ, θ) is closed and such that, for every (λ̄, θ̄) ∈ Λ×Θ, dist(w(λ̄, θ̄),W (w, θ)) → 0 as (λ, y) → (λ̄, θ̄)
(Bonnans & Shapiro, 2000, Proposition 4.4). Additional conditions can ensure the validity of (iv) too; see,
(Bonnans & Shapiro, 2000, Section 4.4).

3 Restating the problem via a smooth penalty function

In order to deal with the binary variables in problem (2), we relax the integrality constraints on θ via a
classic penalty term. This leads to the continuous optimization problem

min
(λ,θ)∈Λ×Θ

G(λ, θ) + 1
ε
φ(θ) (3)
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in which we use the penalty function

φ(θ) =
p∑

i=1
θi(1 − θi). (4)

Note that the function in (4) is a smooth, concave, and quadratic function with the following properties:

∀ θ ∈ [0, 1]p : φ(θ) ≥ 0 and ∀ θ ∈ {0, 1}p : φ(θ) = 0.

This penalty has been introduced in (Raghavachari, 1969) to define equivalent continuous reformulations
of mixed-integer linear programming problems. In Section A we give the main properties of this penalty
function that we use to prove the main results of this and the next section.

We start with a result establishing the equivalence of Problems (2) and (3) in terms of global minimizers. It
is in line with a stream of works analyzing the use of concave penalty functions in the framework of nonlinear
optimization problems with binary or integer variables (see, e.g., (Giannessi & Niccolucci, 1976; Kalantari &
Rosen, 1987; Lucidi & Rinaldi, 2010) and references therein). For the reader’s convenience we provide the
proof of this result in the appendix.
Theorem 1. Suppose that Assumption 1 is satisfied. Then, there exists an ε̄ > 0 such that for all ε ∈ ]0, ε̄],
Problems (2) and (3) have the same global minimizers, i.e.,

argmin
(λ,θ)∈Λ×Θbin

G(λ, θ) = argmin
(λ,θ)∈Λ×Θ

G(λ, θ) + 1
ε
φ(θ).

The conclusion of Theorem 1 is remarkable since it guarantees that despite the fact that (3) is a purely
continuous optimization problem, for ε sufficiently small, all of its global minimizers are mixed-binary feasible
and are exactly the global minimizers of the original problem (2).
Remark 1.

(i) Set Gε : Λ × Θ → R such that Gε(λ, θ) = G(λ, θ) + ε−1φ(θ) and let δΛ×Θbin : Λ × Θ → R be the indicator
function of the set Λ × Θbin, i.e., the function that is zero on Λ × Θbin and +∞ otherwise. Then, it is
easy to see that Gε Γ-converges1 to G+ δΛ×Θbin as ε → 0. Moreover, the family of functions (Gε)ε>0 is
clearly equicoercive since they are all defined on the compact set Λ × Θ. Therefore, it holds

argmin
Λ×Θ

Gε → argmin
Λ×Θ

G+ δΛ×Θbin = argmin
Λ×Θbin

G as ε → 0

in the sense of set convergence. This is a standard result from variational analysis (Dontchev & Zolezzi,
1993) and it is always true provided that G and φ are continuous functions as well as that φ ≥ 0 and
φ(θ) = 0 if and only if θ ∈ Θbin holds.

(ii) In view of (i), which gives an asymptotic result, the statement of Theorem 1 is stronger in the sense that,
for the special function (4) and for ε small enough, argminΛ×Θ Gε = argminΛ×Θbin

G holds.

The previous theorem provides a justification to address problem (3) instead of (2). However, because the
objective function in (3) is nonconvex, only local minimizers are computationally approachable. Thus, the
idea is that of looking for local minimizers of (3) which are also mixed-binary—since the global minimizers of
(2) lie among them.

The next result is entirely new and addresses the issue of identifying mixed-binary local minimizers of the
objective in (3), providing a sufficient condition for that purpose.
Theorem 2. Suppose that Assumption 1 holds. Let c ∈ ]0, 1/2[ and 0 < ε < (1 − 2c)/L. Moreover, let (λ̄, θ̄)
be a local minimizer of

G(λ, θ) + 1
ε
φ(θ) on Λ × Θ.

If dist∞(θ̄,Θbin) := infθ∈Θbin∥θ̄ − θ∥∞ < c, then θ̄ ∈ Θbin.
1This type of convergence of functions is also known as epiconvergence.
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Proof. Since dist∞(θ̄,Θbin) < c, there exists θ ∈ Θbin such that ∥θ̄ − θ∥∞ < c. Let

θt := (1 − t)θ̄ + tθ = θ̄ + t(θ − θ̄) with t ∈ [0, 1].

In particular, ∥θt − θ̄∥∞ = t∥θ − θ̄∥∞ < tc ≤ c and θt ∈ Θ, since Θ is convex. By Lemma 3,

φ(θ̄) − φ(θt) ≥ (1 − 2c)∥θt − θ̄∥ (5)

holds. Moreover, there exists ρ > 0 such that for all (λ′, θ′) ∈ Bρ(λ̄, θ̄) ∩ (Λ × Θ), it holds

G(λ̄, θ̄) + 1
ε
φ(θ̄) ≤ G(λ′, θ′) + 1

ε
φ(θ′).

Now, take t ∈ ]0, 1[ such that t < ρ/(c√p). Then, θt ∈ Θ and ∥θt − θ̄∥ ≤ √
p∥θt − θ̄∥∞ <

√
p tc < ρ.

Therefore, (λ̄, θt) ∈ Bρ(λ̄, θ̄) ∩ (Λ × Θ) and we obtain

G(λ̄, θt) −G(λ̄, θ̄) + 1
ε
φ(θt) − 1

ε
φ(θ̄) ≤ L∥θt − θ̄∥ + 1

ε
(φ(θt) − φ(θ̄))

(5)
≤ L∥θt − θ̄∥ − 1 − 2c

ε
∥θt − θ̄∥

=
(
L− 1 − 2c

ε

)
︸ ︷︷ ︸

<0

∥θt − θ̄∥. (6)

Moreover, if θ̄ ̸∈ {0, 1}p, since θ ∈ {0, 1}p, we have ∥θ− θ̄∥ > 0 and hence ∥θt − θ̄∥ > 0 for t > 0. Thus, (6) is
strictly negative and it holds

G(λ̄, θt) + 1
ε
φ(θt) < G(λ̄, θ̄) + 1

ε
φ(θ̄),

which gives a contradiction. Thus, necessarily θ̄ ∈ {0, 1}p.

Remark 2. (i) Theorem 2 essentially says that, if ε is small enough, within the distance of 1/2 measured
with the infinity norm, there are no other local minimizers of (3) than the ones that are mixed-binary
feasible.

(ii) Note that it does not make much sense to consider local minimizers of the function G over Λ × Θbin,
since any point in Θbin is an isolated point and thus one can find a corresponding local minimizer for
each one of them.

4 An iterative penalty method

We now present an iterative method addressing problem (2). The idea is that of solving a sequence of
problems of the form (3), indexed with k, with decreasing parameters εk. Hence, the problem to be solved in
each iteration reads

min
(λ,θ)∈Λ×Θ

G(λ, θ) + 1
εk
φ(θ). (Pk)

Then, thanks to Theorem 1, it is clear that after a finite number of iterations, the original mixed-binary
optimization problem and the relaxed and penalized one (Pk) become equivalent in terms of global minimizers.
Moreover, as we have already discussed in the previous section, in practice we can only target the computation
of local minimizers, but we can restrict the search to the mixed-binary ones. In the following, we make this
strategy more precise.
Theorem 3. Suppose that Assumption 1 holds. Let (εk)k∈N be a vanishing sequence of positive numbers and,
for every k ∈ N, let (λk, θk) be a local minimizer of (Pk). Then,

lim inf
k→+∞

dist∞(θk,Θbin) < 1/2 =⇒ ∃ k ∈ N s.t. θk ∈ Θbin.

Moreover, if θk ∈ Θbin, then we have that λk is a local minimizer of

min
λ∈Λ

G(λ, θk).
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Algorithm 1: Penalty method
Input: Problem (2), ε0 > 0, β ∈ ]0, 1[.

1 for k = 0, 1, 2, . . . do
2 Let (λk, θk) be a solution (either local or global) of problem (Pk).
3 if θk /∈ {0, 1}p then
4 update εk+1 = βεk

5 else
6 return (λk, θk).

Proof. Suppose that lim inf
k→+∞

dist∞(θk,Θbin) < 1/2 and let c > 0 such that lim inf
k→+∞

dist∞(θk,Θbin) < c < 1/2.
Then, there exists a subsequence (θnk )k∈N such that

∀ k ∈ N : dist∞(θnk ,Θbin) < c and εnk → 0.

Thus, there exists k ∈ N such that

dist∞(θnk ,Θbin) < c and εnk
<

1 − 2c
L

and this, in view of Theorem 2, gives that θnk ∈ Θbin. Concerning the second part of the statement, suppose
that θk ∈ Θbin, where (λk, θk) is a local minimizer of (Pk). Then, θk ∈ {0, 1}p and there exists ρk > 0 such
that

∀ (λ, θ) ∈ Bρk
(λk, θk) ∩ (Λ × Θ): G(λk, θk) + 1

εk
φ(θk) ≤ G(λ, θ) + 1

εk
φ(θ).

Therefore, taking θ = θk in the above inequality and noting that φ(θk) = 0, we have

∀λ ∈ Bρk
(λk) ∩ Λ: G(λk, θk) + 1

εk
φ(θk)︸ ︷︷ ︸

=0

≤ G(λ, θk) + 1
εk
φ(θk)︸ ︷︷ ︸

=0

,

which shows that λk is a local minimizer of G(·, θk) over Λ.

Remark 3.

(i) In the experiments given in Section 5, we checked that the condition considered in Theorem 3 always
occurs, meaning that the distance dist∞(θk,Θbin), where θk was obtained by solving problem (Pk) via
a gradient-based subroutine, remains well-below the threshold 1/2.

(ii) We note that there might indeed exist points θ ∈ Θ such that dist∞(θ,Θbin) > 1/2. For instance, if
we take the standard (p− 1)-simplex

Θ = ∆p−1 =
{
θ ∈ Rp

+ :
p∑

i=1
θi = 1

}
,

we have that {
θ ∈ Θ : dist∞(θ,Θbin) ≥ 1/2

}
= ∆p−1 ∩ [0, 1/2]p, (7)

which for p = 3 is the full equilateral triangle with vertices (e1 + e2)/2, (e1 + e3)/2 and (e2 + e3)/2,
where the ei’s are the vectors of the canonical basis of Rp. In general, the set in (7) is a polytope of
dimension p− 1 with 2p facets and (p(p− 1)/2) vertices.

The method is formally given in Algorithm 1.
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5 Two machine-learning applications

In this section, we present two machine-learning applications: estimating the group-sparsity structure in
regression problems (Subsection 5.1) and performing data distillation (Subsection 5.2). Firstly, we present
the problem setting and the bilevel formulation. Secondly, we show how the problem fits our mathematical
formulation. Finally, we provide a comparison with the relaxation and rounding strategy. The codes are
available as a zip file in the supplementary material.

5.1 Group lasso structure

Here, we present the application of estimating group-sparsity structures, which is useful in areas such as
gene expression analysis. We follow the formulation, the optimization algorithm, and the experimental setup
in (Frecon et al., 2018). In particular, we extend the approach by optimizing over both the hyperparameters θ
and λ, instead of determining λ by cross-validation. We compare our relax and penalize strategy with
the relaxation and rounding method proposed in (Frecon et al., 2018). The datasets used in the tests are
challenging variants of the synthetic datasets referenced in (Frecon et al., 2018), specifically designed to create
classes of differing sizes.

Problem setting and formulation. Given an output vector y ∈ RN and a design matrix X ∈ RN×P , the
group lasso problem can be formulated as follows

min
w∈RP

1
2∥Xw − y∥2 + λ

L∑
l=1

∥θl ⊙ w∥2,

where λ > 0 is a regularization parameter and θl is a binary vector (with entries in {0, 1}) indicating
the features (components) of w belonging to the lth group, meaning Gl = {i ∈ [P ] : θi,l = 1}, where the
vectors θl are thought as columns of a P ×L matrix. In the case of nonoverlapping groups, it is assumed that∑L

l=1 θj,l = 1 for every j ∈ [P ]. In the classic literature on the topic, the groups are assumed to be known a
priori (Yuan & Lin, 2006; Zhao et al., 2009), but often in practice there is no clue about the structure of the
groups and the problem is to infer this group structure from the data. However, this amounts to estimating
the binary variables θl’s, which in general poses a challenge.

In view of the discussion above, in the related literature a common approach is to relax the problem allowing
the θl’s to vary in the continuum [0, 1]P . This approach was followed in (Frecon et al., 2018), in which the
following bilevel optimization problem is proposed

min
θ∈Θ

1
T

T∑
t=1

Ct(wt(λ, θ)) with Θ =
{
θ ∈ [0, 1]P ×L :

L∑
l=1

θl = 1P

}
= (∆L−1)P

and w(λ, θ) = argmin
(w1,...,wT )∈Rd×T

1
T

T∑
t=1

(
1
2∥Xtwt − yt∥2 + λ

L∑
l=1

∥θl ⊙ wt∥2 + η

2∥wt∥2
)
.

(8)

Here, (Xt, yt)1≤t≤T defines T regression problems in which the regressors share the same group-sparsity
structure, Ct is a smooth cost function acting as a validation error for the t-th task, and θl are thought as
columns of a P ×L matrix. Note that in this formulation, λ is supposed to be fixed (possibly determined by a
cross-validation procedure). The regularization terms η/2∥wt∥2, with η ≪ 1, are added to ensure uniqueness
of the solution to the lower-level problem and to devise a dual algorithmic procedure generating a sequence
(w(q)(λ, θ))q∈N with smooth updates (w.r.t. θ) such that w(q)(λ, θ) → w(λ, θ) uniformly on Θ as q → +∞;
see (Frecon et al., 2018, Section 3.2). Ultimately, the groups are estimated by solving the problem

min
θ∈Θ

1
T

T∑
t=1

Ct(w(q)(λ, θ)),

with q large enough, and by appropriately thresholding (a posterior) the solution θ in order to recover binary
variables θl’s.
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Proposed method. Our general relax and penalize approach, as described in Section 4, allows us to bypass
the last thresholding step and directly address the more challenging problem

min
(λ,θ)∈Λ×Θbin

1
T

T∑
t=1

Ct(w(q)(λ, θ)) with


Λ = [λmin, λmax] with 0 < λmin < λmax,

Θbin =
{
θ ∈ {0, 1}P ×L : ∀ j ∈ [P ]

L∑
l=1

θj,l = 1
}
,

(9)

Note that in (Frecon et al., 2018), λ is supposed to be fixed (possibly determined by a cross-validation
procedure). Instead, here we are optimizing w.r.t. both the hyperparameters θ and λ, obtaining a mixed-binary
problem in the end. In Section C we report the details of the extension. Now, since w(q)(λ, θ) is smooth
w.r.t. θ, the objective in (9) satisfies Assumption 1 and hence, in view of Theorem 1 and Theorem 3, we can
consider the relaxed and penalized version of Problem (9), that is

min
(λ,θ)∈Λ×Θ

1
T

T∑
t=1

(
Ct(w(q)(λ, θ)) + 1

ε
φ(θ)

)
, (10)

and state that, if ε is small enough, the two problems (9) and (10) share the same global minimizers. By
leveraging this equivalence, we study in the next section the added benefits of the proposed Algorithm 1.
Remark 4. According to (Frecon et al., 2018, Theorem 3.1) we have that w(q)(λ, θ) → w(λ, θ) as q → +∞
uniformly on Λ×Θbin, so that, similarly to (Frecon et al., 2018, Theorem 2.1), one can prove that Problem (9)
converges as q → +∞ to the problem

min
(λ,θ)∈Λ×Θbin

1
T

T∑
t=1

Ct(w(λ, θ))

in terms of optimal values and sets of global minimizers. This provides a justification for addressing
Problem (9).
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Figure 1: Example of oracle group structure with random sizes and parameter a = 0.1. The relaxation and
rounding method solution has an accuracy of 44 %, while the proposed relax and penalize method has an
accuracy of 65 %. The columns of the solutions are sorted to obtain the maximum accuracy.

Numerical experiments. The experimental setting is similar to that of (Frecon et al., 2018). Indeed,
we create synthetic datasets where each task amounts to predict an oracle regressor w⋆ ∈ RP and an oracle
group structure θ⋆ ∈ RP ×L, such that for all j ∈ [P ] and l ∈ [L], θ⋆

j,l = 1 if j belongs to group l and 0
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Table 1: Test errors (mean ± standard deviation), i.e., the value of the upper level functions G for the relax
and penalize (ref. as r) and relaxation and rounding (ref. as p) methods, over 10 runs of inequal and random
group structures, for a ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

INEQUAL RANDOM

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

G(λr, θ⋆) 0.035 ± 0.001 0.039 ± 0.001 0.044 ± 0.001 0.049 ± 0.002 0.055 ± 0.002 0.055 ± 0.010 0.061 ± 0.011 0.069 ± 0.012 0.077 ± 0.014 0.087 ± 0.015
G(λr, θr) 0.049 ± 0.003 0.050 ± 0.003 0.052 ± 0.002 0.056 ± 0.003 0.062 ± 0.004 0.054 ± 0.004 0.057 ± 0.004 0.061 ± 0.004 0.066 ± 0.005 0.072 ± 0.006

G(λr, θ̄r) 0.158 ± 0.057 0.098 ± 0.043 0.076 ± 0.025 0.081 ± 0.026 0.080 ± 0.021 0.140 ± 0.055 0.186 ± 0.047 0.196 ± 0.057 0.139 ± 0.068 0.137 ± 0.060

G(λp, θ⋆) 0.035 ± 0.001 0.039 ± 0.001 0.044 ± 0.001 0.049 ± 0.001 0.055 ± 0.002 0.060 ± 0.018 0.063 ± 0.012 0.069 ± 0.012 0.078 ± 0.014 0.087 ± 0.015

G(λp, θp)G(λp, θp)G(λp, θp) 0.049 ± 0.0030.049 ± 0.0030.049 ± 0.003 0.053 ± 0.0030.053 ± 0.0030.053 ± 0.003 0.057 ± 0.0030.057 ± 0.0030.057 ± 0.003 0.063 ± 0.0030.063 ± 0.0030.063 ± 0.003 0.068 ± 0.0040.068 ± 0.0040.068 ± 0.004 0.060 ± 0.0150.060 ± 0.0150.060 ± 0.015 0.064 ± 0.0090.064 ± 0.0090.064 ± 0.009 0.067 ± 0.0060.067 ± 0.0060.067 ± 0.006 0.075 ± 0.0100.075 ± 0.0100.075 ± 0.010 0.078 ± 0.0080.078 ± 0.0080.078 ± 0.008

Table 2: Reconstruction errors (mean ± standard deviation), i.e., Frobenius norm of the difference of the
oracle regressor and the obtained regressors, for the relax and penalize (ref. as r) and relaxation and rounding
(ref. as p) methods, over 10 runs of inequal and random group structures, for a ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

INEQUAL RANDOM

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

∥w(λr, θ⋆) − w⋆∥F 4.11 ± 0.14 4.33 ± 0.14 4.57 ± 0.14 4.83 ± 0.15 5.11 ± 0.16 5.40 ± 0.66 5.71 ± 0.71 6.05 ± 0.75 6.42 ± 0.79 6.82 ± 0.83
∥w(λr, θr) − w⋆∥F 4.82 ± 0.22 4.91 ± 0.21 5.06 ± 0.15 5.30 ± 0.18 5.63 ± 0.23 5.78 ± 0.56 6.03 ± 0.63 6.35 ± 0.68 6.72 ± 0.76 7.12 ± 0.81

∥w(λr, θ̄r) − w⋆∥F 11.43 ± 2.07 9.70 ± 2.65 8.38 ± 1.96 8.70 ± 1.68 8.28 ± 2.06 9.73 ± 3.22 13.05 ± 2.66 14.03 ± 1.71 11.76 ± 2.94 11.72 ± 2.57

∥w(λp, θ⋆) − w⋆∥F 4.13 ± 0.14 4.33 ± 0.14 4.57 ± 0.14 4.84 ± 0.13 5.11 ± 0.15 5.62 ± 0.93 5.70 ± 0.70 6.08 ± 0.74 6.50 ± 0.78 6.83 ± 0.81

∥w(λp, θp) − w⋆∥F∥w(λp, θp) − w⋆∥F∥w(λp, θp) − w⋆∥F 5.13 ± 0.195.13 ± 0.195.13 ± 0.19 5.41 ± 0.215.41 ± 0.215.41 ± 0.21 5.68 ± 0.255.68 ± 0.255.68 ± 0.25 5.96 ± 0.175.96 ± 0.175.96 ± 0.17 6.37 ± 0.266.37 ± 0.266.37 ± 0.26 6.34 ± 0.716.34 ± 0.716.34 ± 0.71 6.55 ± 0.666.55 ± 0.666.55 ± 0.66 6.91 ± 0.626.91 ± 0.626.91 ± 0.62 7.27 ± 0.687.27 ± 0.687.27 ± 0.68 7.66 ± 0.687.66 ± 0.687.66 ± 0.68

otherwise. We consider P = 100 features, N = 20 observations, T = 500 tasks, and L = 10 oracle groups.
For every task t ∈ [T ], we generate the oracle regressor w⋆

t and the data (Xt, yt) as follows. The regressor w⋆
t

is generated such that its values are non-zero in one group chosen at random. In particular, we study the
datasets as these values belong to the interval [−1,−a] ∪ [a, 1] as 0 < a ≤ 1 varies. We point out that in
(Frecon et al., 2018), w⋆

t are considered binary, and the smaller a is, the more difficult the problem becomes.
The design matrix Xt ∈ RN×P is randomly drawn according to a standard normal distribution and then
normalized column-wise. The output yt is such that yt ∼ N (Xtw

⋆
t , 0.2ID). Validation and test sets are

generated similarly. Unlike (Frecon et al., 2018), we allow groups of completely random sizes, with no
predefined criteria. In particular, we consider two settings: the unequal one, with half groups of size 5 and
half groups of size 15, and the random one, where the size of the groups are allowed to be different and are
calculated as follow. We generate L normally distributed random values, apply the softmax operation to
obtain L percentages, and use these percentages to distribute the P features across the different groups. All
the results are averaged over 10 runs. See Section C for more details.

After running the experiments with the relaxation and rounding and the relax and penalize, we obtain the
following quantities: θ⋆ oracle group structure, (λr, θr) obtained by the relaxation and rounding method
before rounding, (λr, θ̄r) obtained by the relaxation and rounding method after rounding, (λp, θp) obtained
by the relax and penalize method. Notice that θ⋆, θ̄r, θp are binary instead θr might not be. We evaluate
the results with two performance measures. Firstly, in Figure 1 we show an example of the different group
structures retrieved by the methods compared to the oracle, corresponding to a random synthetic dataset
with a = 0.1. We can notice that using the relaxation and rounding method, many values are less than 0.5.
As a result, after rounding, some rows may end up as zeros, leaving those features unassigned to any group.
Secondly, in Table 1 we compare the test error, i.e., the value of the upper level functions. It demonstrates
that the relaxation and rounding method can achieve low values for the objective functions prior to rounding,
but these values increase after rounding. In contrast, the proposed relax and penalize method can also reach
low values for the objective function while producing an integer solution. Finally, in Table 2 we also compare
the reconstruction error, i.e., the Frobenius norm of the difference between the oracle regressor w⋆ and the
obtained regressors. These other results also indicate consistency with the previously observed findings.

5.2 Data distillation

We now present the application of data distillation. Data distillation is a process that synthesizes compact
summaries of large datasets, enabling efficient model training and inference. Preserving essential information
while reducing size allows quicker processing and improved performance in various applications. In (Sachdeva
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& McAuley, 2023), the authors give an extensive survey on data distillation and propose a bilevel optimization
model to handle the task (see Section 2 in (Sachdeva & McAuley, 2023)), which is the same model described
here. We optimize the lower-level problem exactly, and the upper-level problem with a stochastic projected
gradient descent. We test the relaxation and rounding and relax and penalize strategies over two real datasets,
showing the effectiveness of the last one.

Problem setting and formulation. Given a training dataset that needs to be distilled Dtrain =
{(xtrain

i , ytrain
i )}m

i=1 and a data budget τ ∈ Z+, data distillation techniques aim to synthesize a high-fidelity
data summary Dtrain

syn = {(xtrain
i , ytrain

i )}τ
i=1 with τ ≪ m. Given a validation set Dval = {(xval

j , yval
j )}n

j=1, the
data distillation task can be formulated as the following bilevel optimization problem

min
v∈{0,1}m,e⊤v=τ

ℓval(ζ(v)) with ζ(v) = argmin
ζ

ℓtrain(ζ, v) + s∥ζ∥2 (11)

with validation loss ℓval, weighted training loss ℓtrain =
∑m

i=1 viℓ(xtrain
i , ytrain

i , ζ), regularization
parameter s ∈ R, v being a binary vector of dimension m indicating the samples in Dtrain

syn , and e⊤v = τ is
the knapsack constraint to take into account the budget. Therefore, we wish to have vi = 1 for the τ most
representative samples.

A simple approach to solve Problem (11) is to relax it by allowing the vi’s to vary within the interval [0, 1],
projecting them to the region defined by the knapsack constraint, and then rounding them at the end. In
particular, in our case we suppose xi, xj ∈ Rd as well as yi, yj ∈ Re and we consider ζ = (W, b) a linear model
with weight W and bias b as well as ℓval and ℓ being mean squared error losses. Therefore, the aim is to solve
the bilevel integer problem

min
v∈[0,1]m,e⊤v=τ

1
2n

n∑
j=1

∥W (v)xval
j + b(v) − yval

j ∥2

with (W (v), b(v)) = argmin
W ∈Re×d,b∈Re

1
m

m∑
i=1

vi∥Wxtrain
i + b− ytrain

i ∥2 + s∥W∥2.

(12)

Proposed method. Using the approach presented in Section 4, we avoid the final thresholding and directly
optimize the following problem

min
v∈{0,1}m,e⊤v=τ

1
2n

n∑
j=1

∥W (v)xval
j + b(v) − yval

j ∥2

with (W (v), b(v)) = argmin
W ∈Re×d,b∈Re

1
m

m∑
i=1

vi∥Wxtrain
i − b− ytrain

i ∥2 + s∥W∥2.

(13)

We solve the lower-level problem exactly, obtaining

W (v) =
(

1
m
Cv(X,Y )

)(
1
m
Cv(X) + sId

)−1
, b(v) = ȳv −W (v)x̄v, (14)

with

Cv(X,Y ) =
m∑

i=1
vi(ytrain

i − ȳv)(xtrain
i − x̄v)⊤

being the cross-covariance matrix,

Cv(X) =
m∑

i=1
vi(xtrain

i − x̄v)(xtrain
i − x̄v)⊤

being the covariance matrix, and

x̄v = 1∑m
i=1 vi

m∑
i=1

vixi, ȳv = 1∑m
i=1 vi

m∑
i=1

viyi;
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Table 3: Experiments on the regression task across two real-world datasets: music and blog. The distillation
budget τ is varied at 10 %, 20 %, and 30 % (perc column) of the training set size. For the relaxation and
rounding and the relax and penalize methods, we report the values of the upper level function (before rounding
in brackets) for the validation and test sets, the cardinality of the synthesized set, and the RMSE.

dataset perc τ method ℓval
∣∣Dtrain

syn
∣∣ ℓtest RMSE

music 10% 23186 rounding 660.46 (51.46) 514 664.20 36.45
penalize 72.78 23186 74.52 12.21

20% 46371 rounding 548.43 (50.52) 728 553.67 33.28
penalize 59.32 46371 61.50 11.09

30% 69557 rounding 473.63 (50.44) 532 477.85 30.91
penalize 55.25 69557 57.85 10.76

blog 10% 5240 rounding 9290.77 (296.38) 91 9344.57 136.71
penalize 381.30 5240 297.99 24.41

20% 10479 rounding 8721.20 (296.10) 118 9306.59 136.43
penalize 315.86 10479 246.70 22.21

30% 15720 rounding 9258.10 (308.84) 53 9785.17 139.89
penalize 305.51 15720 229.39 21.42

see Section D for more details.

We can also write the problem as

min
v

ℓval(ζ(W (v), b(v))) with v ∈ {0, 1}m, e⊤v = τ. (15)

We solve the upper-level problem by means of a projected stochastic gradient descent method. To efficiently
perform the projection over the knapsack constraint, we use the Kiwiel algorithm (Kiwiel, 2008); see Section D
for further details. Now, since W (v) and b(v) are smooth w.r.t. v, the objective in (15) satisfies Assumption 1
and hence, in view of Theorem 1 and Theorem 3, we can consider the relaxed and penalized version of
Problem (15), i.e.,

min
v

ℓval(ζ(w(v), b(v))) + 1
ε
φ(v) with v ∈ [0, 1]m, e⊤v = τ (16)

and state that, if ε is small enough, the two problems (15) and (16) share the same global minimizers.

Numerical experiments. We tested the proposed method on the data distillation problem by performing
experiments on two real-world datasets. First, music (Bertin-Mahieux, 2011), a dataset with song features
from 1922 to 2011 used to predict the release year based on 90 attributes, including timbre averages and
covariances. Second, blog (Buza, 2014), a dataset containing features from blog posts, focused on predicting
the number of comments received in the next 24 hours using various attributes. For each dataset, we address
Problem (12) by using a training set for the lower level and a validation set for the upper level. We vary the
distillation budget τ at 10 %, 20 %, 30 % of the training set size; see Section D for more details. We run the
experiments with the relaxation and rounding and relax and penalize strategies, and we report the results in
Table 3. First, we compare the final objective values of the upper-level problem obtained from relaxation and
rounding before and after rounding, alongside those from relax and penalize, including the actual number
of training samples selected in Dtrain

syn . Next, we evaluate both methods by optimizing the same upper level
function on a test set using the selected Dtrain

syn sets, reporting the objective value and the root mean square
error (RMSE), a common metric for assessing regression model performance. Similar to the group lasso
structures discussed in Section 5.1, the relaxation and rounding methodology initially achieves a low objective
function value at the upper level, but this value increases after rounding. In contrast, the relax and penalize
method successfully finds an integer solution with a low objective function value. Additionally, the penalty
method selects a number of training samples close to the budget, while the rounding algorithm results in a
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solution with only a few components above 0.5, leading to fewer samples and ultimately not utilizing the full
budget. As a result, when applying the selected Dtrain

syn to a test set, the relax and penalize method achieves
lower values for the objective function and RMSE, leading to a better overall solution.

6 Conclusion

In this paper, we studied the idea of relaxing the integrality constraints and using a penalty term to handle
mixed-binary bilevel optimization problems arising in hyperparameter tuning of machine learning systems.
Besides a result concerning the equivalence in terms of global minimizers, sufficient conditions for identifying
mixed-binary local minimizers are stated. These theoretical results naturally lead to devise a penalty method
that is, under suitable assumptions, guaranteed to provide mixed-binary solutions. The novel approach is
shown to outperform classic approaches based on relaxation and rounding using the examples of the group
lasso problem and the data distillation task.
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A Auxiliary results

In this section, we give a number of technical results related to the penalty function φ used throughout the
paper. We recall that φ : [0, 1]p → R is defined as

φ(θ) =
p∑

i=1
θi(1 − θi).

Moreover, we denote by [p] the set {1, . . . , p} and by ∥·∥ the Euclidean norm in Rp. Occasionally, we will also
used the norms

∥θ∥1 =
p∑

i=1
|θi| and ∥θ∥∞ = max

1≤i≤p
|θi|.

Lemma 1. Let ψ : [0, 1] → R be such that

∀ t ∈ [0, 1] : ψ(t) = t(1 − t).

Let σ ∈ ]0, 1/2]. Then, for every t1, t2 ∈ [0, 1] we have∣∣∣∣ t1 + t2
2 − 1

2

∣∣∣∣ ≥ σ =⇒ |ψ(t2) − ψ(t1)| ≥ 2σ|t2 − t1|.

Proof. Let t1, t2 ∈ [0, 1]. One can easily check that

ψ(t2) − ψ(t1) = (1 − (t1 + t2))(t2 − t1).

Therefore,

|ψ(t2) − ψ(t1)| = |t1 + t2 − 1||t2 − t1| = 2
∣∣∣∣ t1 + t2

2 − 1
2

∣∣∣∣|t2 − t1| ≥ 2σ|t2 − t1|.

Lemma 2. Let σ ∈ ]0, 1/2] and θ, θ′ ∈ [0, 1]p be such that the following holds:

∀ i ∈ [p] : θ′
i ̸= θi =⇒

∣∣∣∣θi + θ′
i

2 − 1
2

∣∣∣∣ ≥ σ and
∣∣∣∣θ′

i − 1
2

∣∣∣∣ ≤
∣∣∣∣θi − 1

2

∣∣∣∣.
Then, φ(θ′) − φ(θ) ≥ 2σ∥θ′ − θ∥.

Proof. Let θ, θ′ ∈ [0, 1]p be as in the statement and let I = {i ∈ [p] | θi ̸= θ′
i}. Then,

∀ i ∈ I :
∣∣∣∣θi + θ′

i

2 − 1
2

∣∣∣∣ ≥ σ and ψ(θi) ≤ ψ(θ′
i)

and hence, by Lemma 1, we have

φ(θ′) − φ(θ) =
∑
i∈I

ψ(θ′
i) − ψ(θi)

=
∑
i∈I

|ψ(θ′
i) − ψ(θi)| ≥ 2σ

∑
i∈I

|θ′
i − θi|

= 2σ∥θ′ − θ∥1 ≥ 2σ∥θ′ − θ∥,

where we used ∥·∥ ≤ ∥·∥1 for the last inequality.

Remark 5. Lemma 2 says that if the components of the mid point (θ+ θ′)/2 are bounded away from 1/2 and
the componentwise distance from θ to 1/2 is larger than that of θ′ to 1/2, then φ(θ′) − φ(θ) can be bounded
from below by ∥θ′ − θ∥; up to a multiplicative constant.
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Remark 6. The conditions on θ and θ′ required by Lemma 2 are satisfied if

∀ i ∈ [p] : θi ̸= θ′
i =⇒


(θi − 1/2)(θ′

i − 1/2) ≥ 0,
|θ′

i − 1/2| ≤ |θi − 1/2|,
2σ ≤ |θi − 1/2|.

Indeed, in such case we have∣∣∣∣θi + θ′
i

2 − 1
2

∣∣∣∣ = 1
2 |θi + θ′

i − 1|

= 1
2

∣∣∣∣θi − 1
2 + θ′

i − 1
2

∣∣∣∣ (∗)= 1
2

(∣∣∣∣θi − 1
2

∣∣∣∣+
∣∣∣∣θ′

i − 1
2

∣∣∣∣) ≥ 1
2

∣∣∣∣θi − 1
2

∣∣∣∣ ≥ σ,

where the equality in (∗) is due to the fact that

(θi − 1/2)(θ′
i − 1/2) ≥ 0, |θ′

i − 1/2| ≤ |θi − 1/2| =⇒
(
θi ≤ θ′

i ≤ 1/2 or θi ≥ θ′
i ≥ 1/2

)
.

Corollary 1. Let σ ∈ ]0, 1/2] and θ ∈ {0, 1}p. Then

∀ θ′ ∈ [0, 1]p : ∥θ′ − θ∥ ≤ 1 − 2σ =⇒ φ(θ′) ≥ 2σ∥θ′ − θ∥.

Proof. Let θ ∈ {0, 1}p and θ′ ∈ [0, 1]p. We will check the conditions in Lemma 2. Let i ∈ [p]. Since
|θi − 1/2| = 1/2, the condition |θ′ − 1/2| ≤ |θi − 1/2| is automatically satisfied. Now, we note that

θi = 0 =⇒
∣∣∣∣θi + θ′

i

2 − 1
2

∣∣∣∣ =
∣∣∣∣θ′

i

2 − 1
2

∣∣∣∣ = 1
2 |θ′

i − 1| = 1
2(1 − |θ′

i − θi|),

θi = 1 =⇒
∣∣∣∣θi + θ′

i

2 − 1
2

∣∣∣∣ =
∣∣∣∣θ′

i

2

∣∣∣∣ = 1
2 |θ′

i| = 1
2(1 − |θ′

i − θi|).

Therefore, ∣∣∣∣θi + θ′
i

2 − 1
2

∣∣∣∣ ≥ σ ⇐⇒ 1 − |θ′
i − θi| ≥ 2σ ⇐⇒ |θ′

i − θi| ≤ 1 − 2σ

and the first condition in Lemma 2 is then equivalent to the condition ∥θ′ − θ∥∞ ≤ 1 − 2σ. The statement
follows by recalling that ∥·∥∞ ≤ ∥·∥.

Remark 7. It is clear from the proof of Corollary 1 that, in fact, it holds

∀ θ′ ∈ [0, 1]p : ∥θ′ − θ∥∞ ≤ 1 − 2σ =⇒ φ(θ′) ≥ 2σ∥θ′ − θ∥.

Lemma 3. Let θ ∈ {0, 1}p, θ̄ ∈ [0, 1]p, and c ∈ R be such that ∥θ − θ̄∥∞ < c < 1
2 . Let

θt = (1 − t)θ̄ + tθ with t ∈ [0, 1].

Then,
φ(θ̄) − φ(θt) ≥ (1 − 2c)∥θt − θ̄∥.

Proof. Since |θi − θ̄i| < c < 1
2 holds for all i = 1, . . . , n, we have

1
2 =

∣∣∣∣θi − 1
2

∣∣∣∣ ≤ |θi − θ̄i| +
∣∣∣∣θ̄i − 1

2

∣∣∣∣ < c+
∣∣∣∣θ̄i − 1

2

∣∣∣∣,
which implies ∣∣∣∣θ̄i − 1

2

∣∣∣∣ > 1
2 − c.
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Moreover, since θi ∈ {0, 1} and |θ̄i − θi| < c < 1
2 , we have

θi = 0 =⇒ θi = 0 ≤ θ̄i < c <
1
2 ,

θi = 1 =⇒ 1
2 < 1 − c < θ̄i ≤ 1 = θi,

and, hence, since θt
i is between θi and θ̄i, it holds∣∣∣∣θt

i − 1
2

∣∣∣∣ ≥
∣∣∣∣θ̄i − 1

2

∣∣∣∣ > 1
2 − c

so that ∣∣∣∣θt
i + θ̄i

2 − 1
2

∣∣∣∣ =
∣∣∣∣12(θt

i + θ̄i − 1)
∣∣∣∣ = 1

2

∣∣∣∣(θt
i − 1

2

)
+
(
θ̄i − 1

2

)∣∣∣∣
= 1

2

(∣∣∣∣θt
i − 1

2

∣∣∣∣+
∣∣∣∣θ̄i − 1

2

∣∣∣∣) ≥
∣∣∣∣θ̄i − 1

2

∣∣∣∣ > 1
2 − c.

Therefore, by Lemma 2, φ(θ̄) − φ(θt) ≥ (1 − 2c)∥θt − θ̄∥ holds.

B Proof of Theorem 1

For the sake of brevity, we set

S = argmin
(θ,λ)∈Λ×Θbin

G(θ, λ) and S(ε) = argmin
(θ,λ)∈Λ×Θ

G(θ, λ) + 1
ε
φ(θ).

Recall that Θbin = Θ ∩ {0, 1}p. Let ρ ∈ ]0, 1[ and let ε̂ ∈ ]0, (1 − ρ)/L[. We define the open set

U =
⋃

θ∈Θbin

Bρ(θ),

where ρ is chosen small enough so to ensure that Θ \ U ̸= ∅.2 Let θ̄ be a minimizer of φ over the compact
set Θ \ U . Then, clearly

∀ θ′ ∈ Θ \ U : φ(θ′) ≥ φ(θ̄) > 0. (17)
(Note that, since θ̄ /∈ U , then θ̄ /∈ {0, 1}p, and hence there exists i ∈ [p] such that θ̄i ∈ ]0, 1[, which implies
that φ(θ̄) ≥ θ̄i(1 − θ̄i) > 0.) Thus, since

lim
ε→0+

1
ε
φ(θ̄) = +∞,

there exists ε̃ ∈ ]0, ε̂] such that

∀ ε ∈ ]0, ε̃] : 1
ε
φ(θ̄) > sup

Λ×Θbin

G− inf
Λ×(Θ\U)

G. (18)

Now, we let ε ∈ ]0, ε̃] and show that S(ε) ⊂ Θbin. Let (λ∗, θ∗) ∈ S(ε) and suppose, by contradiction, that
(λ∗, θ∗) /∈ Θbin. We can have the following two cases:

(a) Let θ∗ ∈ U . Then, there exists θ ∈ Θbin such that θ∗ ∈ Θ ∩Bρ(θ). Thus, in view of Assumption 1
and Corollary 1, we have

G(λ∗, θ) −G(λ∗, θ∗) ≤ L∥θ∗ − θ∥ < 1 − ρ

ε
∥θ∗ − θ∥ ≤ 1

ε
φ(θ∗) = 1

ε
φ(θ∗) − 1

ε
φ(θ)

2This means that there exists aθ∗ ∈ Θ such that for every θ ∈ Θbin, it holds ∥θ − θ∗∥ > ρ. This condition is met if we pick
θ∗ ∈ Θ \ {0, 1}p (see Assumption 1(ii)) and (taking into account that Θbin = Θ ∩ {0, 1}p is a finite set) choose ρ such that
0 < ρ < infθ∈Θbin ∥θ − θ∗∥.
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and, hence,
G(λ∗, θ) + 1

ε
φ(θ) < G(λ∗, θ∗) + 1

ε
φ(θ∗),

which yields a contradiction since (λ∗, θ∗) is a global minimizer of Problem (3).

(b) Let θ∗ /∈ U . Then (λ∗, θ∗) ∈ Λ × (Θ \ U) and hence, recalling (17) and (18), we have

G(λ∗, θ∗) + 1
ε
φ(θ∗) ≥ inf

Λ×(Θ\U)
G+ 1

ε
φ(θ∗)

≥ inf
Λ×(Θ\U)

G+ 1
ε
φ(θ̄)

> sup
Λ×Θbin

G

≥ G(θ, λ) + 1
ε
φ(θ)︸︷︷︸

=0

for any (θ, λ) ∈ Λ × Θbin ⊆ Λ × Θ, which gives again a contradiction.

Thus, in both cases we get a contradiction and therefore necessarily (λ∗, θ∗) ∈ Λ × Θbin. Now, if we take
(λ∗, θ∗) ∈ S(ε), since (λ∗, θ∗) ∈ Λ × Θbin, we have

G(λ∗, θ∗) + 1
ε
φ(θ∗)︸ ︷︷ ︸

=0

≤ G(θ, λ) + 1
ε
φ(θ)︸︷︷︸

=0

∀ (θ, λ) ∈ Λ × Θbin ⊆ Λ × Θ.

Thus, for all (θ, λ) ∈ Λ × Θbin, G(λ∗, θ∗) ≤ G(θ, λ), meaning (λ∗, θ∗) ∈ S. Vice versa, let (λ∗, θ∗) ∈ S.
Choosing (λ̃∗, θ̃∗) ∈ S(ε), since (λ̃∗, θ̃∗) ∈ Λ × Θbin, we have

G(λ∗, θ∗) + 1
ε
φ(θ∗)︸ ︷︷ ︸

=0

= G(λ∗, θ∗) ≤ G(λ̃∗, θ̃∗)

≤ G(λ̃∗, θ̃∗) + 1
ε
φ(θ̃∗) = min

(θ,λ))∈Λ×Θ
G(θ, λ) + 1

ε
φ(θ).

Hence, (λ∗, θ∗) ∈ S(ε).

C Details on the group lasso application

In this section, we report on the details regarding the group-sparsity structure estimation in regression
problems presented in Section 5.1. Firstly, we discuss the extension of the algorithm presented in (Frecon
et al., 2018) to the mix-integer case. Secondly, we report the details of the performed experiments.

C.1 Extensions to (Frecon et al., 2018)

In (Frecon et al., 2018), Problem (9) is considered only in the integer hyperparameter θ, while the real
hyperparameter λ is supposed to be fixed. Here, we report the extension to the optimization in both the
hyperparameters θ and λ. In particular, (Frecon et al., 2018) do not solve the lower-level problem exactly,
rather consider the following approximate problem, providing conditions under which it converges to the
exact one as the number of inner iterations q grows:

min
(θ,λ)∈Λ×Θ

U (q)(θ, λ) with


u(0) ≡ 0 ∈ RP ×L,

∀i = 0, 1, . . . , q − 1 : u(i+1)(θ, λ) = A(u(i)(θ, λ), θ, λ),
w(q)(θ, λ) = B(u(q)(θ, λ), θ, λ),
U (q)(θ, λ) = 1

T

∑T
t=1 Ct(w(q)(θ, λ))
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and A : RP ×L × Λ × Θ → RP ×L as well as B : RP ×L × Λ × Θ → RP . We denote by ∂1A(u, θ, λ) the partial
derivatives of A with respect the variable u and ∂2A(u, θ, λ) the partial derivatives of A with respect the
variables λ and θ. The same notation is used for the partial derivatives of B. When specializing to the case
of group lasso, A and B take the expression reported in Section B.1 of (Frecon et al., 2018) supplementary
material:

A(u, θ, λ) = ∇Φ∗
λ(∇Φλ(u) + γAθB(u, θ, λ)),

B(u, θ) = ∇f∗(−A⊤
θ u)

with Φ∗
λ being the separable Hellinger-like function as defined in Definition 3.2 in (Frecon et al., 2018), γ > 0

is some given step-size, f∗ is the Fenchel conjugate of f , and A⊤
θ is the transpose of the operator Aθ as

defined in Problem 3.1 and Problem 3.2 in (Frecon et al., 2018). Therefore, noticing that the dependence
on θ is hidden in Φλ, we only need to update ∂2A(u, θ, λ), because B does not depend on θ and ∂1A(u, θ, λ)
is the derivative by u. We recall that, for every u = (ul)1≥l≤L ∈ RP ×L and v = (vl)1≥l≤L ∈ RP ×L for every
l = 1, . . . , L,

∇lΦ(u) = ∇ϕ(ul) = ul√
λ2 − ∥ul∥2

2
and ∇lΦ∗(v) = ∇ϕ∗(vl) = vl√

λ2 − ∥vl∥2
2

holds. Therefore, we obtain

A(l)(u, θ, λ) = λ

(
vl(λ)√

1 + ∥vl(λ)∥2
2

)
and

∂λA(l)(u, θ, λ) = vl(λ) + λv′
l(λ)√

1 + ∥vl(λ)∥2
2

− λvl(λ)⟨vl(λ), v′
l(λ)⟩

(1 + ∥vl(λ)∥2
2) 3

2

with
vl(λ) = 1√

1 + ∥ul∥2
2

· ul + γθl ⊙ B(u, θ) and v′
l(λ) = − λ

(1 + ∥ul∥2
2) 3

2
· ul.

For clarity, we re-write vl(λ) and v′
l(λ) as

vl(λ) = ι · ul + dl, v′
l(λ) = κ · ul

with
ι = 1√

1 + ∥ul∥2
2
, κ = −λ

(1 + ∥ul∥2
2) 3

2
, dl = γθl ⊙ B(u, θ).

Our aim is to compute ∂2A(u, θ, λ)⊤a with a ∈ RP ×L, where the partial derivative is with respect to all the
hyperparameters, meaning the group of variables (θ, λ). Considering that

∀ (b, β) ∈ RP ×L × R : ∂2A(u, θ, λ)(b, β) = ∂θA(u, θ, λ)b+ ∂λA(u, θ, λ)β,

we have

⟨∂2A(u, θ, λ)(b, β), a⟩ = ⟨∂θA(u, θ, λ)b, a⟩ + β⟨∂λA(u, θ, λ), a⟩
= ⟨b, ∂θA(u, θ, λ)⊤a⟩ + ⟨∂λA(u, θ, λ), a⟩ · β
= ⟨(b, β),

(
∂θA(u, θ, λ)⊤a, ⟨∂λA(u, θ, λ), a⟩

)
⟩.

(19)

It follows that
∂2A(u, θ, λ)⊤a =

(
∂θA(u, θ, λ)⊤a, ⟨∂λA(u, θ, λ), a⟩

)
.

Thanks to this result, we can use Algorithm 2 in (Frecon et al., 2018) extended to the optimization in both
hyperparameters to the hypergradient computation, substituting the expression of ∂2A(u(i)(θ, λ), θ, λ)⊤a(i+1)
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Algorithm 2: Hypergradient computation (reverse mode)
1 Require: Group structure θ, number of inner iterations q.
2 Initialize u(0)(θ, λ) ≡ 0 ∈ RP ×L

3 for i = 1 to q do
4 u(i)(θ, λ) = A(u(i−1)(θ, λ), θ, λ).
5 end for
6 Output: 1. u(0)(θ, λ), . . . , u(q)(θ, λ), w(q)(θ, λ) = B(u(q)(θ, λ), θ).
7 Initialize aq = ∂1B(u(q)(θ, λ), θ, λ)⊤∇C(x(q)(θ, λ),bq = ∂2B(u(q)(θ, λ), θ, λ)⊤∇C(x(q)(θ, λ).
8 for i = q − 1 to 0 do
9 a(i) = ∂1A(u(i)(θ, λ), θ, λ)⊤a(i+1)

10 b(i) = ∂θA(u(i)(θ, λ), θ, λ)⊤a(i+1) + b(i+1)

11 β(i) = ⟨∂λA(u(i)(θ, λ), θ, λ), a(i+1)⟩ + β(i+1)

12 end for
13 Output: 2. Hypergradients ∇θU (q)(θ, λ) = b(0), ∇λU (q)(θ, λ) = β(0).

in the calculation of b(i) (with i iteration index); see Algorithm 2. In particular, in our case, we have an
additional component of b(i) regarding the hyperparameter λ, that we call β(i) ∈ R. Therefore,

β(i) = ⟨∂λA(u(i)(θ, λ), θ, λ), a(i+1)⟩ + β(i+1)

=
L∑

l=1
⟨∂λA(l)(u(i)(θ, λ), θ, λ), a(i+1)

l ⟩ + β(i+1)

holds with

⟨∂λA(l)(u(i)(θ, λ), θ, λ), a(i+1)
l ⟩ =

⟨vl(λ) + λv′
l(λ), a(i+1)

l ⟩√
1 + ∥vl(λ)∥2

−
λ⟨vl(λ), v′

l(λ)⟩⟨vl(λ), a(i+1)
l ⟩

(1 + ∥vl(λ)∥) 3
2

.

C.2 Experimental setup

In Section 5.1, we conduct experiments on synthetic datasets for the group lasso problem. Regarding the
details of the experiments, we implement the framework of Algorithm 1 by solving a sequence of K = 6
outer optimization problems P k of type (10) w.r.t. (λ, θ) and with ε0 = 105 and β = 0.2. The lower-level
problem in (8) is solved using Algorithm 1 in (Frecon et al., 2018) stochastically, setting the batch size to
1 as in their paper. Therefore, at each iteration, we consider one wt, η = 10−3, q = 500 inner iterations,
and 0.99 η/λ as the inner step size. For the upper-level optimization in (10), we utilize SAGA (Defazio
et al., 2014) and conduct a total of 2 · 104 upper-level iterations, which are distributed among the K = 6
problems (Pk) as follows: [5000, 5000, 2500, 2500, 2500, 2500]. The step size is set to T/0.025 for θ and
it is multiplied by the preconditioner c = 10−4 for λ. The hyperparameters θ and λ are projected to
the unit simplex (∆L−1)P and the box [10−3, 1], respectively, and they are initialized to λ0 = 10−1 and
θ0 = PΘ(L−1IP ×L + N (0P ×L, 0.1L−1IP ×L). For a fair comparison with the relaxation and rounding method,
we run the code with the same parameters and a total of 2 · 104 outer iterations and we round up θ at the end.

D Details on the data distillation application

In this section, we report the calculations regarding the data distillation issue presented in Section 5.2. Firstly,
we present the calculations to solve exactly the lower-level problem. Secondly, we report the calculations of
the gradient of the upper-level problem needed to perform the stochastic gradient descent. Finally, we report
the details of the experiments that were performed.
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D.1 Lower-level calculations

The lower-level problem that we want to solve in (13) is given by

min
W,b

1
m

m∑
i=1

vi∥Wxtrain
i + b− ytrain

i ∥2 + s∥W∥2 (20)

with xtrain
i ∈ Rd, ytrain

i ∈ Re, W ∈ Re×d, b ∈ Re. In the subsequent sections, we will use x and y instead of
xtrain and ytrain for simplicity. We define these quantities

x̄ =
∑m

i=1 vixi∑m
i=1 vi

, ȳ =
∑m

i=1 viyi∑m
i=1 vi

, x̂i = xi − x̄, ŷi = yi − ȳ.

It follows that
m∑

i=1
vix̂i =

m∑
i=1

vixi −
m∑

i=1
vix̄i = 0,

m∑
i=1

viŷi = 0. (21)

Considering the first part of the objective function in (20), we obtain

m∑
i=1

vi∥Wxi + b− yi∥2 =
m∑

i=1
vi∥Wx̂i − ŷi +Wx̄+ b− ȳ∥2

=
m∑

i=1
vi∥Wx̂i − ŷi∥2 +

m∑
i=1

vi∥Wx̄+ b− ȳ∥2

+ 2
m∑

i=1
vi⟨W

m∑
i=1

vix̂i −
m∑

i=1
viŷi,W x̄+ b− ȳ⟩

=
m∑

i=1
vi∥Wx̂i − ŷi∥2 +

m∑
i=1

vi∥Wx̄+ b− ȳ∥2.

(22)

Using this, Problem (20) is equivalent to

min
W,b

1
m

m∑
i=1

vi∥Wx̂i − ŷi∥2 + s∥W∥2 + 1
m

(
m∑

i=1
vi

)
∥Wx̄+ b− ȳ∥2.

Therefore, the minimization can be performed separately in the variables w and b, and Problem (20) is
equivalent to

min
W

1
m

m∑
i=1

vi∥Wx̂i − ŷi∥2 + s∥W∥2 and b = ȳ −Wx̄.

We solve the first minimization in W by setting

0 =
m∑

i=1

2
m
vi(Wx̂i − ŷi)x̂⊤

i + 2sW = 2W
(

1
m

m∑
i=1

vix̂ix̂
⊤
i + sId

)
− 2
m

m∑
i=1

viŷix̂
⊤
i ,

which is valid if and only if

W =
(

1
m

m∑
i=1

viŷix̂
⊤
i

)(
1
m
x̂ix̂

⊤
i + sId

)−1
.

Finally, we obtain the formula in (14). Computationally, we calculate W (v)z for z ∈ Rd by first solving

(Cv(X) + sId)a = z

in a and then calculating
W (v)z = Cv(X,Y )a.
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D.2 Upper-level calculations

We consider the upper-level problem in (13) neglecting the constraints on v:

min
v∈Rm

1
2n

n∑
j=1

∥W (v)xval
j + b(v) − yval

j ∥2. (23)

For simplicity, in the subsequent sections, we will use x and y instead of xval and yval, and we will refer to
the objective function in (23) as J(v) with J : Rn → R.

To solve the problem with a stochastic gradient descent algorithm, we need to calculate the gradient of J(v):

∂J(v)
∂vj

= 1
n

n∑
j=1

(W (v)xi + b(v) − yi)⊤
(
∂W (v)
∂vj

xi + ∂b(v)
∂vj

)

= 1
n

n∑
j=1

(W (v)(xi − x̄v) + ȳv − yi)⊤
(
∂W (v)
∂vj

(xi − x̄v) + 1∑m
i=1 vi

ŷj −W (v)x̂j

)

= 1
n

n∑
j=1

(W (v)(xi − x̄v) + ȳv − yi)⊤ ∂W (v)
∂vj

(xi − x̄v)

+ 1∑m
i=1 vi

(W (v)(xi − x̄v) + ȳv − ȳ)⊤ (ŷj −W (v)x̂j) .

(24)

We will proceed to calculate ∂W (v)
∂vj

, taking advantage of the expression given in (14). We consider the
following three maps

ϕ : Rn → Rn×d, v 7→
n∑

i=1
vi(yi − ȳv)(xi − x̄v)⊤,

ψ : Rn → Rd×d, v 7→
n∑

i=1
vi(xi − x̄v)(xi − x̄v)⊤ + sId,

φ : GL(d) → Rd×d, A 7→ A−1

with GL(d) being the general linear group of degree d. Therefore, we can write

W (v) = ϕ(v)φ(ψ(v)) ∈ Rn×d. (25)

Notice that
φ′(A) : Rd×d → Rd×d, U 7→ A−1UA−1 ∀U ∈ Rd×d (26)

since
φ(A + tU) − φ(A)

t
= (A + tU)−1 − A−1

t
= A−1 A − (A + tU)

t
(A + tU)−1 = A−1U(A + tU)−1. (27)

Using (25) and (27), we can write

W (v + tu) −W (v)
t

= ϕ(v + tu)φ(ψ(v + tu)) − ϕ(v)φ(ψ(v))
t

= 1
t
(ϕ(v + tu)φ(ψ(v + tu)) − ϕ(v + tu)φ(ψ(v))

+ ϕ(v + tu)φ(ψ(v)) − ϕ(v)φ(ψ(v)))

= ϕ(v + tu)φ(ψ(v + tu)) − φ(ψ(v))
t

+ ϕ(v + tu) − ϕ(v)
t

φ(ψ(v)).

(28)

It follows that
W ′(v)[u] = ϕ(v)(φ ◦ ψ)′(v)[u] + ϕ′(v)[u]φ(ψ(v))

= ϕ(v)ψ(v)−1ψ′(v)[u]ψ(v)−1 + ϕ′(v)[u]ψ(v)−1

= (Cv(X,Y )(Cv(X) + sId)−1ψ′(v)[u] + ϕ′(v)[u])(Cv(X) + sId)−1 ∈ Rn×d

(29)
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holds, where, in the second equality we used that

(φ ◦ ψ)′(v)[u] = φ′(ψ(v))(ψ′(v)[u]) = ψ(v)−1ψ′(v)[u]ψ(v)−1.

Choosing u = ej in (29), we obtain

∂W (v)
∂vj

= (Cv(X,Y )(Cv(X) + sId)−1 ∂ψ(v)
∂vj

+ ∂ϕ(v)
∂vj

(Cv(X) + sId)−1. (30)

From the definitions of x̄v and ȳv, we retrieve

∂x̄v

∂vj
= ∂

∂vj

(∑m
i=1 vixi∑m

i=1 vi

)
= −

∑m
i=1 vixi

(
∑m

i=1 vi)
2 + xj∑m

i=1 vi
= xj − x̄v∑m

i=1 vi
= x̂j∑m

i=1 vi
,

∂ȳv

∂vj
= yj − ȳv∑m

i=1 vi
= ŷj∑m

i=1 vi
.

Therefore,

∂ϕ(v)
∂vj

=
n∑

i=1
δij(yi − ȳv)(xi − x̄v)⊤ +

n∑
i=1

vi
∂

∂vj
(ȳv − yi)(x̄v − xi)⊤

= ŷj x̂
⊤
j −

ŷj

∑n
i=1 vix̂i∑n
i=1 vi

−
(
∑n

i=1 viŷi) x̂⊤
j∑n

i=1 vi

= ŷj x̂
⊤
j ,

where we used (21) in the last equation as well as

∂ψ(v)
∂vj

= x̂j x̂
⊤
j .

Finally,
∂W (v)
∂vj

=
(
Cv(X,Y )(Cv(X) + sId)−1X̂jX̂

⊤
j + ŶjX̂

⊤
j

)
(Cv(X) + sId)−1,

and

∂b(v)
∂vj

= ∂ȳv

∂vj
− ∂W (v)

∂vj
X̄v −W (v)∂x̄v

∂vj

= ŷj∑n
i=1 vi

− ∂W (v)
∂vj

X̄v −W (v) x̂j∑n
i=1 vi

= ŷj −W (v)x̂j∑n
i=1 vi

− ∂W (v)
∂vj

x̂v.

As for the lower lever, computationally we calculate ∂W (v)
∂vj

z for z ∈ Rd, solving the following systems

(Cv(X) + sId)aj = x̂j , (Cv(X) + sId)a = z.

After solving the upper-level problem with the stochastic gradient descent method, we need to project the
solution onto the simplex defined by the knapsack constraint. To do this efficiently, we utilize the Kiwiel
algorithm (Kiwiel, 2008).

D.3 Experimental setup

In Section 5.2, we present experiments on the data distillation problem for two regression tasks involving the
following real-world datasets:
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music (Bertin-Mahieux, 2011) is a dataset that includes song features from 1922 to 2011. It consists of
463 715 training samples, with the first 231 857 used for training the lower level and the remaining
231 857 reserved for testing the weights afterward. Additionally, 51 630 validation samples were
utilized for the upper level. Each sample represents a song, featuring 90 attributes (12 related to
timbre average and 78 related to timbre covariance), with the year of release as the target variable
(an an integer). The aim is to predict the release year of a song based on its audio features.

blog (Buza, 2014) is a dataset containing features extracted from blog posts. It comprises 52 397 training
and 7624 validation samples, with the first 1089 used for training the lower level and the remaining
6535 set aside for testing the weights afterward. Each sample represents a post with 280 features,
and the target variable is the number of comments received in the next 24 hours (as an integer). The
goal is to predict comments received in the next 24 hours using various features.

Regarding the details of the experiments, we implement the framework of Algorithm 1 by solving a sequence
of K = 10 outer optimization problems (Pk) of type (16) w.r.t. v. We initialize ε0 = 109 for both datasets,
we use different β (β = 3.16 · 10−2 for the dataset music and β = 2.00 · 10−2 for the dataset blog). For each
problem of type (16), we solve the lower-level problem exactly and the upper-level problem with stochastic
gradient descent. In the lower-level problem, we set the regularization parameter to s = 102. For the
upper-level problem, we use a batch of size 600 for computing time reasons and we perform 103 total outer
iterations, 102 for each K = 10 outer problems (Pk), and we set the step size to 10−3 for music and to
10−5 for blog. The hyperparameter v is projected to the simplex defined by the knapsack constraint and
initialized at τ

m Im with m being the size of the training set and τ being the budget. For a fair comparison
with the correspondent relaxed and rounding method, we run the code with the same parameters and a total
of 103 outer iterations, rounding v at the end. We perform the projection onto the feasible set defined by the
knapsack constraints using the Kiwiel algorithm with tolerance 10−10 and 103 number of iterations.
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