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ABSTRACT

This paper introduces semi-universal perturbations that bridge the gap between specific and universal
adversarial perturbations. The original idea is to craft a specific perturbation by choosing it among a
set of L universal perturbations. We propose to jointly learn the perturbations of this set to maximize
the chances to attack each example by allowing it to choose its own perturbation. To do so, we derive
an algorithm, with convergence guarantees under Lipschitz continuity assumptions. Semi-universal
perturbations offer a better flexibility, interpretability and diversity, confirmed by our experiments.
Additionally, we provide a generalization bound on the abilities of the perturbations to attack new
examples.

1 Introduction

Embedded technologies using artificial Neural Networks (NN) are increasingly present in our daily lives. Their high
expressive power has shown a great success in various complex tasks [36, 21]. However, some concerns have been
raised about their safety and more particularly for the safety of the user [24] since the pioneer work of Szegedy et al.
[50] which has shown the existence of adversarial attacks. The most striking example is that of automated vehicles,
where malicious attacks could lead the car to take unwanted action with dramatic consequences [46, 42].

Most of the adversarial attacks are quasi-negligible perturbations that fool the NN prediction. From a fast one-shot
method [19] to the first iterative procedures [43, 39, 30, 9, 34], the crafting of adversarial perturbations has lately
received a lot of attention from the machine learning community. To this regard, momentum-based methods [16, 53]
have shown a promising boost in the transferability of the attacks learned on one NN to other NNs. In addition, various
contributions have investigated algorithmic concerns leading to accelerated and scale-invariant attacks [33] as well
as parameter-free attacks [13]. In another line of research, Finlay et al. [18] designed attacks exploiting the decision
boundary of NNs, while Zhang et al. [61] proposed to take into account the structure of images through a principal
component analysis. A key particularity of all the above attacks is that they are specific (or example-based), meaning
that they are crafted to attack a single example. Henceforth, to attack a new example, one needs to learn the associated
perturbation once again. Although they are very effective, they have the major drawback of being time consuming.

On the other end of the spectrum, universal (or example-agnostic) attacks [60] aim to find an attack which, once
learned, can be applied to every new example. Moosavi-Dezfooli et al. [40] first demonstrated that there exists a single
perturbation, coined universal adversarial perturbation (UAP), which, when added to any new example, is very likely to
fool the classifier; a variant exploiting the orientations of the perturbation vectors was proposed by Dai and Shu [15].
Later, Shafahi et al. [49] devised a more efficient method by hinging on a projected gradient descent algorithm. In
addition, inspired by the observation that UAP does not attack all classes equally, Benz et al. [7] proposed a class-based
universal perturbation. Although these perturbations are universal, it is hard to interpret why they work on a case-to-case
basis. In general, current state-of-the-art universal attacks remain hardly interpretable out-of-the-box and require a
posteriori tailored studies [59]. These works have suggested that a reasonable assumption is that the perturbations
should live in a low-dimensional manifold. This assumption has been justified by Gu and Rigazio [22], and later by
Tabacof and Valle [51]. Some works proposed solutions to learn such a manifold [27, 61, 4, 23, 55]. Finally, Zhang
et al. [60] suggest that simple gradient-based UAP methods may lead to better fooling performance.
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Contributions. We propose a new kind of perturbations, that we call semi-universal perturbations and intend to
bridge the gap between specific and universal perturbations. The original idea is to specifically craft an attack for each
example by choosing, in an unsupervised manner, a perturbation among a set of L different universal perturbations.
To do so, we define an optimization problem to jointly learn the L perturbations allowing each example to choose its
own perturbation (L can be seen as a tuning parameter controlling the amount of diversity between the perturbations).
To solve it, we derive a gradient-based solution with convergence guarantees. Additionally, to justify that the L
semi-universal perturbations learned can be used to attack a model on unseen examples, we derive a generalization
bound on the deviation between the true and the empirical fooling risks. Put into words, we get a bound on how much
the learned perturbations are able to fool new examples, confirming that we can use the learned perturbations to attack a
model on data coming from the same task. We then propose a simple attack procedure. Lastly, our experiments confirm
the effectiveness of the semi-universal perturbations over previous gradient-based UAP, in line with the conclusion
of [60]. Our results additionally show that they lead to more interpretable and transferable attacks.
Outline. We recall the general framework of adversarial perturbations in Section 2. We introduce in Section 3 our
semi-universal perturbations as well as an algorithmic solution to learn them. Then Section 4 is devoted to attacking
with these perturbations: we derive a generalization bound on the quality of the perturbations to attack unseen examples
in order to justify our attack procedure. Before concluding, numerical experiments are conducted in Section 5 on
multiple benchmark datasets.

2 Preliminaries and related works

2.1 Adversarial perturbations

We stand in a multiclass setting where X ⊆RP is a P -dimensional input space and Y={1, . . . , c} is the set of c∈N+

classes. We consider an unknown data distribution D on X×Y that models the task; the associated marginal distribution
on X is DX . We use the notation Dn, resp. Dn

X , for the distribution of a sample constituted of n data points i.i.d.
sampled from D, resp. DX .

We consider a trained model f : RP→Rc which associates each example4 x∈X to its probabilities f(x)∈Rc to belong
to any of the c classes from Y . The predicted class of x by f is then defined as Cf (x)=argmaxy∈Y f(x)y . Adversarial
learning aims to find for each original example x∼DX a point a∈X close to x such that Cf (a) ̸=Cf (x). Since a is
close to x, one can expect f to predict the same class for both examples. Thus, a is called adversarial example and said
to fool the classifier Cf .

There exists a vast literature on the ways to build adversarial examples, measure their closeness to original examples,
and quantify how much they affect the decision process of f . Here, we embrace the common setting of adversarial
example a=x+ε built by adding an adversarial perturbation ε to an original example x. We consider that the two
are close if the ℓp-norm of the added perturbation is small enough [31], i.e., ∥ε∥p≤δ, for some small budget δ>0. In
addition, since asking Cf (a) ̸=Cf (x) can lead to numerical instabilities [39] during the learning of ε, we consider a
loss function H :Rc×Y→R taking as inputs f(a) and a class k from Y that is either Cf (x) or the original class y of x.
In this paper, we use the cross-entropy loss (or its [0, 1]-bounded counterpart [17]).

Given the model f , and an unlabeled data set SX = {xi}ni=1 ∼ Dn
X , there exist two current paradigms

for crafting adversarial perturbations: (i) specific attacks, where for each x ∈ SX we look for a perturbation
ε(x)∈Bp(δ)={e∈RP | ∥e∥p ≤ δ}, specifically tailored to attack the example x (hereafter, we drop the dependency
on x and simply denote ε); (ii) universal attacks, where we look for a perturbation ε such that a=x+ε is an adver-
sarial example for all x from SX . To learn such adversarial perturbations, we assume that we have a labeled sample
S={(xi, yi)}ni=1∈(X×Y)n consisting of n data points. We recall in the next subsections the most popular specific
and universal attacks [60]. Note that, given some convex set C, we denote by ProjC the projection onto C.

2.2 Most popular specific attacks

DeepFool [39]. For a given x ∈ SX , the DeepFool attack is the smallest ℓp perturbation managing to fool the
classifier Cf . More formally, it solves minimizeε∈RP ∥ε∥p s.t. Cf (x+ε) ̸=Cf (x).

PGD [34]. Given S, and a loss function H , the adversarial perturbation for a given (x, y)∈S is defined as the one
inside the ℓp-ball which maximizes the loss between x+ε and y, i.e.,

maximize
ε∈RP

H(f(x+ ε), y) s.t. ∥ε∥p ≤ δ. (1)

4We make the distinction between X and RP since the input data can live inside a manifold (e.g., the space of images whose
pixels’ intensity lies within [0,1]).
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In practice, the opposite of the objective in Equation (1) is minimized by resorting to a projected gradient method, hence
the name of the attack.

2.3 Most popular universal attacks

UAP [40]. The first universal perturbation ε was crafted by aggregating the DeepFool perturbations ∆εi associated to
all samples xi ∈ {x ∈ SX | Cf (x+ε)=Cf (x)}. The aggregation step is defined as ε ← ProjBp(δ)(ε+∆εi) and is
repeated until some fooling rate is reached.
Fast-UAP [15]. This attack follows the UAP procedure but, instead of aggregating all the perturbations ∆εi, it only
adds the perturbation with the closest orientation to the current iterate ε.
UAP-PGD [49]. Given S, the UAP-PGD attack elaborates upon PGD by framing the universal perturbation as the
solution of the following optimization problem

maximize
ε∈RP

1

n

∑
(xi,yi)∈S

H(f(xi + ε), yi) s.t. ∥ε∥p ≤ δ. (2)

CW-UAP [7]. Recently, UAP-PGD has been extended to class-wise UAP where a universal perturbation is built for
each class. Let us denote ∀k∈Y, Sk={xi | (xi, k)∈S} the set of training points of the k-th class and nk the size of
Sk, then CW-UAP aims at solving

maximize
{εk∈RP }k∈Y

∑
k∈Y

1

nk

∑
xi∈Sk

H(f(xi + εk), k) s.t. ∀k ∈ Y, ∥εk∥p ≤ δ. (3)

The solution amounts in learning multiple independent UAP-PGD perturbations, one for each class.

Our contribution starts from this principle of learning one perturbation per class, or at least learning a set of perturbations.
Our original idea is to craft a specific perturbation by choosing it among a set of universal perturbations, that we call
semi-universal perturbations. To do so, instead of learning the perturbations independently, we propose in Section 3 an
approach that consists of learning L∈N+ perturbations jointly. We believe that this increases the chances of attacking
each example by providing a better expressiveness implied by the facts (i) that the perturbations are learned jointly and
(ii) that for each example we choose the perturbation maximizing H the most. This is confirmed by our experiments in
Section 5 which supports the ability to efficiently attack with L<c perturbations.

3 Crafting semi-universal perturbations

3.1 Learning the set of semi-universal perturbations

The originality of our work is to jointly learn L∈N+ universal adversarial perturbations {ε1, . . . , εL} where each
εl∈Bp(δ). To do so, we propose to frame the learning procedure as follows.
Problem 1 (Learning semi-universal ℓp-perturbations). Let L be the number of semi-universal perturbations to learn.
Given S={(xi, yi)}ni=1, and the model f , find ε=[ε1, . . . , εL] solving

maximize
ε∈Bp(δ)L

{
L(ε) := 1

n

n∑
i=1

max
εl∈ε

H(f(xi + εl), yi)

}
, (4)

For each pair (xi, yi)∈S, the objective in Equation (4) only picks one of the L perturbations in ε which maximizes
the loss between f(xi+εl) and yi the most. In other words, learning aims at being specific enough for each example
while being sufficiently universal to cover all the pairs in S. As later shown in Section 5, it results that ε shows a great
diversity. Note that when L=1 (i.e., for a single perturbation) Equation (4) boils down to Equation (2). In addition, it
bears similarities with Equation (3) when L equals the number of classes and each εl is independently learned on Sl.

Due to the model f , it is worth stressing that Problem 1 is a difficult non-concave maximization problem. Finding its
global solution is thus out of reach. To tackle this challenge, we detail below an algorithmic solution to efficiently find
an approximate solution. Note that we defer in Appendix A an alternative solution based on a stochastic solver fully
exploiting the finite-sum nature of Problem 1.

3.2 Gradient-based numerical solution

To maximize L in Problem 1, we embrace a projected gradient ascent algorithm augmented with an Armijo-like
line-search strategy (for ensuring some sufficient increase at each iteration). Its principle is inspired from the minorize-
maximization algorithm where, at each step, a lower bound of the objective function L is maximized. Let ε =

3
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Algorithm 1 L-SUAP

Require: Parameter ρ ∈]0, 1[
Initialize ε(0) = [ε

(0)
l ]Ll=1

for k = 0 to K − 1 do
Provide a rough estimate of γk > 0
Projected gradient step: ε(k+1/2) = ProjBp(δ)L(ε

(k) + γk∇L(ε(k)))
Choice of relaxation parameter
ik = 0
repeat

ε(k+1) = (1− ρik)ε(k) + ρikε(k+1/2)

ik = ik + 1
until L(ε(k+1)) ≥ L(ε(k)) + ρik−1h(k)(ε(k+1/2))

end for
return ε(K)

[ε1, . . . , εL] and some sequence of step-sizes {γk}k∈N+
. Then, at each iteration k ∈ N+ the algorithm looks for

ε(k+1/2)∈Bp(δ)L which maximizes the linearized surrogate h(k)(ε)=L(ε(k))+
〈
∇L(ε(k)), ε−ε(k)

〉
−(1/2γk)∥ε−

ε(k)∥2 with ⟨·,·⟩ the Frobenius inner product and ∥·∥ the induced norm. Such choice is motivated by the fact that, for
concave and µ-smooth functions L, and for all γk≤ 1

µ , we have L(ε)≥h(k)(ε). Henceforth, we have

ε(k+1/2) = argmax
ε∈Bp(δ)L

h(k)(ε) = ProjBp(δ)L

(
ε(k) + γk∇L(ε(k))

)
, (5)

which recasts into one projected gradient ascent step. Note that the differentiability of L depends on the choice H
and on the NN f to attack. For instance, for ReLu-based NN, it is likely that ∇L(ε(k)) is not well-defined5. In that
case and whenever L is not differentiable, we resort to a sub-gradient instead. We additionally consider a relaxation
step of the form ε(k+1) = (1 − αk)ε

(k)+αkε
(k+1/2), where the relaxation parameter αk ∈ (0, 1] is appropriately

chosen by an Armijo-like line-search strategy to ensure [8] some sufficient increase in L. This algorithmic procedure is
sketched in Algorithm 1 and referred as L-SUAP. In practice, we suggest initializing the L universal perturbations in a
non-informative manner by randomly sampling each ε

(0)
l ∼ [−δ, δ]P and additionally projecting onto the ball Bp(δ).

This procedure comes with convergence guarantees stated below.

Theorem 1 (Convergence [8]). Let {ε(k)}k∈N be the sequence of Algorithm 1. Suppose that∇L is Lipschitz continuous.
Then each limit point of {ε(k)}k∈N is a stationary point of Problem 1 and {L(ε(k))}k∈N converges towards the objective
value at the limit point. If L satisfies the Kurdyka-Łojasiewicz (KŁ) property at any point, then the sequence converges
to a stationary point of Problem 1.

The existence of the Lipschitz constant is central to ensure convergence guarantees. Note that studying the Lipschitz
continuity of NN and obtaining sharp Lipschitz constant is difficult (e.g., [12, 20]).

Remark 1. Many functions met in NNs (e.g., activation functions, loss) are semi-algebraic or tame, and thus, satisfy
the KŁ property [2, 58]. Since these concepts are stable under many operations, it is reasonable to assume that many
deep NNs f are likely to satisfy the KŁ property and so does L.

While little attention is usually devoted to these concerns for crafting adversarial attacks, we empirically show in
Section 5 the superiority of the corresponding principled algorithmic solution even though these assumptions do not
always hold.

Now we detail a solution to attack unseen examples with semi-universal perturbations. To justify our procedure
presented in Section 4.2, we first provide in Section 4.1 a bound on the generalization capacities of the learned
perturbations on unseen examples.

5Note that L is first and foremost not differentiable because of the max term. However, empirically, iterates almost never lie at
such singularities. To avoid this concern, one can replace max by a smooth approximation.
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4 Attacking unseen examples

4.1 Generalization guarantees: we can attack on unseen examples

The performance of the learned semi-universal perturbations on unseen examples can be approximated through
generalization bounds [37]. Formally, given a model f : RP→Rc, and a loss function H : Rc×Y→[0, 1], we are
interested in the quality of the learned perturbations ε∈Bp(δ)L on new examples that we call the true fooling risk
and defined as Rf

D(ε)=E(x,y)∼D maxεl∈ε H(f(x+εl), y). Since D is unknown, we have no access to its value, but
we can compute its empirical counterpart on a dataset S∼Dn that we call empirical fooling risk and defined by
Rf

S(ε)=
1
n

∑n
i=1 maxεl∈ε H(f(xi+εl), yi). Note that these definitions extend the fooling rate, for which H is the

0-1-loss. Since our objective is to learn perturbations that fool the model, our goal is to maximize the risk. To ensure
that Rf

S(ε) is a good estimate of Rf
D(ε), we prove the following theorem based on the Rademacher complexity [5].

This theorem is a generalization bound on the deviation between the two values. For the sake of completeness, we
provide in Appendix the version of the bound based on the empirical Rademacher complexity.
Theorem 2 (Proof deferred in Appendix). For any distribution D on X×Y , for any loss function H : Rc × Y → [0, 1],
for any model f : RP→Rc, for any L∈N+, for any budget δ>0, for any ℓp-norm with p≥0, for any λ∈(0, 1], we have

P
S∼Dn

 ∀ε ∈ Bp(δ)L, ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2Rσ

S

[
Bp(δ)L

]
+ 3

√
ln 4

λ

2n

 ≥ 1− λ, (6)

where we define the Rademacher complexity [6] of the “family of perturbations” Bp(δ)L as

RS

[
Bp(δ)L

]
= E

σ∼Σn
sup

ε∈Bp(δ)L

[
1

n

n∑
i=1

σi max
εl∈ε

H(f(xi+εl), yi)

]
, (7)

with σ={σi}ni=1∼Σn, and Σ being the Rademacher distribution, i.e., Σ(−1)= 1
2 and Σ(+1)= 1

2 .

Equation (6) tells us that for all the possible sets of L∈N+ perturbations ε belonging to Bp(δ)L, the empirical risk
Rf

S(ε) does not deviate too much from the true risk Rf
D(ε) when the Rademacher complexity Rσ

S [Bp(δ)L] is small.
From the attacker’s point of view, the associated lower bound on Rf

D(ε) is of interest and gives an estimate of the
“chances” to fool the model. Put into words, the more the perturbations learned manage to fool a model on S and the
lower the Rademacher complexity, the higher the chances to fool the model on new examples.

Note that Theorem 2 is valid for any perturbations ε that live in Bp(δ)L (whatever the value of L, the budget δ and
the p-norm), implying that our result is general enough to stand not only for the classical universal perturbations from
Bp(δ) (e.g., for UAP-PGD with L=1), but also for semi-universal perturbations learned from Problem 1. It is important
to notice that Theorem 2 holds for any model f we want to attack that is not necessarily the one we used to learn ε.
Hence, the bound holds in the context of adversarial transferability.

The form of this bound is quite classical, but it has the originality to state a theoretical certification from the attacker’s
point of view to estimate—given a model f—the true fooling risk Rf

D(ε) to quantify how much the learned perturbations
are able to fool a given model on unseen examples. Indeed, in the literature many recent works aim to understand the
generalization abilities in an adversarial setting, but they take the defender’s point of view and provide generalization
bounds for the so-called true adversarial risk that measures how much the learned model is able to face adversarial
attacks on unseen examples. In other words, while we study the fooling abilities of the perturbations for a given model,
they study the performance (or robustness) of the model when this latter is attacked by adversarial perturbations (without
knowing the attack). Among these works, we can mention Yin et al. [57], Khim and Loh [26], Awasthi et al. [3] that are
based on an adversarial Rademacher complexity of the class of the models. Other generalization bounds have been
derived for the adversarial risk, such as with VC-dimension [1, 38], with covering numbers [41], with algorithmic
stability [56], or in PAC-Bayes [52].

4.2 Methodology: how to attack unseen examples

According to Theorem 2, once ε has been learned with Algorithm 1 from a sample S ∼Dn, we can attack a new
example by picking one perturbation amongst the L perturbations as follows.
Problem 2 (Attacking unseen example). Given some data pair (x, y) ∼ D, given a model f , the corresponding
adversarial attack reads a=ProjX (x+ε̂) where ε̂=argmaxεl∈εH(f(x+εl), y). If we do not have access to y, and
assuming that f is a well-performing model, then y is replaced by Cf (x).
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Figure 1: ℓ∞-based SUAP attacks on MNIST. (Left panel) Learned adversarial perturbations. (Right panel) In the
fooling matrix, labels range from 0 to 9 from top to bottom and from left to right.

When f is a NN, in order to evaluate which perturbation from ε=[ε1, . . . , εL] maximizes the loss function, solving
Problem 2 requires performing L independent forward passes through f . Note that, since they are independent, they can
be performed in parallel to accelerate the computation. We provide below a complexity comparison between specific,
semi-universal and universal attacks.

Remark 2. Given a model f that is a neural network whose forward complexity is of O(d) for a single input sample,
then the complexity to compute∇H(f(x), y) is of order O(2d), since the backward pass is also of order O(d). Then, it
follows that (specific) for K iterations, cost ∼ O(2Kd); and (semi-universal) for L perturbations, cost ∼ O(Ld);
(universal) cost ∼ O(1 ).

Hence, from the standpoint of computational complexity, universal attacks are the most efficient. To a lesser extent,
one-shot specific attacks (i.e., K=1, such as in FGSM [19]) and our proposed semi-universal attack achieve comparable
complexity for small L.

5 Numerical experiments

We now conduct experiments on 3 popular benchmark classification datasets and 2 NN architectures: a differentiable
multi-layer perceptron (MNIST) and ResNets (CIFAR-10 and ImageNet). Hereafter, we consider ℓ∞-attacks with a
maximum budget δ=8/255. For reproducibility purposes we report implementation details such as pre-processing,
data splitting and models tuning in the supplementary material, as well as results on ℓ2-attacks.

5.1 MNIST Experiments

We first consider the MNIST dataset [32] useful to interpret the learned adversarial perturbations.
Illustration and role of the universal perturbations. We report in Figure 1 (left) the learned universal perturbations
of 5-SUAP. Interestingly, they all exhibit strong patterns. In particular, we observe that ε1 and ε5 are very similar up to
the sign difference. Indeed, since our framework does not handle the tuning of the sign of the perturbation, it might
happen that 2 perturbations are the opposite of each others. It is worth noticing that the universal perturbations learned
are consistent throughout multiple splits and random initializations. Moreover, we report in Figure 1 (right) the fooling
matrices associated to each of the perturbations {εl}5l=1. The latter shows the correspondence between the predicted
target Cf (x) of some image x (in lines) and the label of the associated adversarial attack (in columns), i.e., Cf (x+ε̂)
(see Problem 2). The fooling matrices highlight that each universal perturbation plays a different role. For instance, ε1
mostly allows to attack images of digits “3” and “9” into being misclassified as “5” and “4”, respectively. Instead, ε3 is
mainly used to attack images of “5” into “3”. Coincidentally, one can distinguish the tilted digit “3” in ε3. As opposed
to CW-UAP, our SUAP attack automatically captures the similarity between multiple digits such as “3” and “9”.
Illustration of the behavior of the generalization bound. We report in Figure 3 an estimation of the lower and upper
bounds on Rf

D(ε) from Theorem 2. The Rademacher complexity is approximated by resorting to the maximization
Algorithm 1 where L is replaced by the quantity inside the sup of Equation (7). The maximum value of the objective is
then averaged over multiple draw of σ∼Σn. As expected, we observe that the empirical fooling risk increases with L.
While the Rademacher complexity (and so the generalization gap between Rf

D(ε) and Rf
S(ε)) increases also with L

it is interesting to remark that the lower bound on Rf
D(ε) tends to grow, suggesting that considering semi-universal

perturbations can increase the chances to fool a model.
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(a) 5-SUAP attacks.

airplane bird deer frog
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(b) CW-UAP attacks. Each row of the fooling matrix indicates the adver-
sarial label obtained for each 10 class-wise attacks.

UAP

Adversarial label
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(c) UAP attack.

Figure 2: ℓ∞-based attacks on CIFAR-10. In the fooling matrices, labels range {airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck} from top to bottom and left to right.

5.2 CIFAR-10 experiments

We turn to CIFAR-10 dataset [29] and compare the performance of our attack with the baselines.
Baselines. Our L-SUAP attack is brought into comparison against the following universal attacks6.
• We compare with the UAP-PGD proposed by Shafahi et al. [49] which is closely related to our 1-SUAP with a single
perturbation, but differs from two aspects. First, the authors have considered a capped loss with parameter β to prevent
any single sample from dominating the objective (hereafter we use the value β=9 that was found to be the best in [49]).
Second, the authors resort to the stochastic normalized gradient method ADAM to learn the perturbation. Since their
code is not publicly available, we tried to reproduce their version as closely as possible.
• For the sake of consistency, we implemented a Pytorch version of the FAST-UAP [15] originally designed for
TensorFlow. We use the same hyper-parameters as in their code: a desired fooling rate of 80%, a maximum of 10
iterations for DeepFool, an overshoot of 0.02 to prevent vanishing updates.
• We compare against the CW-UAP [7] method whose code was kindly granted by the authors.
• We consider standard specific attacks such as FGSM [19] and PGD [34] as well as more advanced techniques, i.e.,
MI-FGSM [16] and AutoAttack [13], in order to grasp the existing gap of performance between specific and universal
attacks. To this effect, we resort to the TorchAttacks repository [28].
Illustration and insights about SUAP attacks. Similarly to the MNIST experiment, we report in Figure 2a the
learned 5-SUAP universal perturbations (left) and their fooling matrices (right). We observe that each SUAP universal
perturbation plays a different role and illustrates diversity in perturbations. Indeed, for instance, ε2 is mostly used to
attack images of animals (bird, cat, dog, frog, horse) so that they become misclassified as deer: in ε2 one can distinguish
two deer facing each other. Another example is ε3 that is mostly used to misclassify images of airplane and ship as bird;
in ε3 one can distinguish a bird. In addition, we report in Figures 2b and 2c the fooling matrices and some universal
perturbations of the CW-UAP attack and UAP attack, respectively. Contrary to SUAP, we have merged all 10 fooling
matrices of CW-UAP (one for each class) into a single one since they are all disjointed. Thus, each row of Figure 2b
(left) corresponds to the adversarial label obtained for each of 10 independent class-wise attacks. Unsurprisingly, many
of the same couples (predicted label, adversarial label) appear in the fooling matrices of SUAP, CW-UAP and UAP. This
makes sense since, ultimately, each couple (predicted label, adversarial label) depends on the similarity between images
classes and how the classifier proceeds to distinguish between the classes. Despite this resemblance, the key point
here is that all three methods operate differently. Especially, by its construction L-SUAP is able to find overlapping
decomposition of the (predicted label, adversarial label) couple. As such, it automatically unveils the similarity between
examples belonging to two different classes.
Impact of the numbers of training samples. Herein, we take a deeper look at the impact of two parameters on the
performance of SUAP attacks. More precisely, we study the influence of the amount of training samples n and the
number of perturbations L (see Problem 1) on the test fooling rate. To this end, we let n and L vary in {1K, 2K, 3K, 4K}
and {1, 3, 5, 7, 10}, respectively. All learned L-SUAP attacks are evaluated on a distinct test set. Results, averaged
over multiple splits, are reported in Figure 4. Overall, we observe that increasing L improves the performance, thus

6Pytorch codes of UAP and Fast-UAP baselines will be made publicly available along with our proposed SUAP attack in order to
contribute to the TorchAttacks repository [28].
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Figure 4: Impact of parameters. Depending on the
number of CIFAR-10 samples, we report the fooling rate
of ℓ∞-based L-SUAP attacks.

confirming that having more perturbations is beneficial to attack the network f . This observation has to be contrasted
with the fact that the amount of data n required to achieve good performance goes in pair with the complexity of the
learning Problem 1, hence with L. As such, for n=1K or 2K, the performance does not significantly improve (or worse,
decrease) with larger L. In what follows, we restrict to a setting made of few samples (i.e., n=2K).
Comparison with baselines. We report in Table 1 the performances of ℓ∞-attacks, in terms of fooling rate. First of
all, 1-SUAP outperforms all universal attacks (i.e., UAP-PGD, FAST-UAP and CW-UAP) and, most importantly, it
surpasses UAP-PGD which is closely related. We believe that this is due to our algorithmic solution which benefits
from better optimization guarantees. In addition, as L grows, we observe an increase in performance of SUAP attacks,
thus justifying the advantages of having more degrees of freedom. Interestingly, the SUAP attacks manage to improve
upon the one-shot specific FGSM attack. However, the performances are still very far behind the more advanced
specific attacks. Nonetheless, such difference in performance have to be contrasted with their associated computational
complexity (see Remark 2). Overall, L-SUAP yields a competitive trade-off between universality and specificity by
tuning the number L of universal perturbations.
Transferability of attacks. We further evaluate how the learned attacks on the ResNet18 model manage to fool more
complex architectures such as the pre-trained ResNet50 and MobileNetv2 [47] models. We additionally consider two
robust models from the RobustBench repository [14], namely r-ResNet18 [48] and r-ResNet50 [10], which are trained
with some defense mechanisms against ℓ∞-attacks of budget δ = 8/255. Results are reported in Table 1. Overall,
L-SUAP systematically yields a better transferability than all universal attacks, as shown by the higher fooling rates. In
addition, it manages to outperform specific attacks when the target model architecture is significantly different than
the base model on which the attacks have been learned (i.e., Mobilenetv2 vs. ResNet18). Note that this is precisely
the setting where most universal attacks also show greater transferability than specific attacks. Interestingly, L-SUAP
shows competitive results on robust models.

5.3 ImageNet experiments

We tackle a large scale scenario made of 1K classes. Such setting is problematic for CW-UAP as computing or storing
1K perturbations exceeds most memory storage spaces: It is not studied here.
Results. We report the performances in Table 2. Once again, we observe a drastic gap of performance between
UAP-PGD and 1-SUAP, confirming the superiority of the numerical solution of Algorithm 2 for L=1 perturbation over
the standard UAP-PGD solver [49]. Overall, SUAP achieves performance of the order of magnitude as specific attacks
(e.g., MI-FGSM). It suggests that, for large-scale settings with numerous classes, solely a few universal perturbations
are enough to attack most of images.

6 Conclusion

This paper introduces a framework for crafting semi-universal attacks. This new family of attacks is halfway between
specific and universal attacks by jointly leaning multiple universal perturbations. When facing an unseen example, an
adversarial example is built by selecting, in an unsupervised manner, the appropriate perturbation among all. Numerical
experiments support that the number of perturbations does act as a trade-off between universality and specificity.
Beyond the gain in performance, semi-universal attacks pull out of existing attacks by capturing meaningful patterns
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Table 1: Performance and transferability of ℓ∞-attacks on a ResNet18 trained on CIFAR-10. Results are divided
into universal (top), semi-universal (middle) and specific (bottom) attacks. Bold fonts highlight the best fooling rate in
each attack category for each target model (along the columns).

ATTACK
SOURCE TRANSFER
ResNet18 ResNet50 MobileNetv2 r-ResNet18 r-ResNet50

UAP-PGD [49] 12.53 ± 0.60 21.51 ± 0.18 39.37 ± 0.19 2.01 ± 0.01 2.54 ± 0.05
FAST-UAP [15] 11.16 ± 1.03 19.65 ± 1.22 36.51 ± 0.30 1.94 ± 0.01 2.33 ± 0.05
CW-UAP [7] 13.85 ± 0.18 21.95 ± 0.28 39.62 ± 0.33 2.26 ± 0.07 2.26 ± 0.06
1-SUAP 36.83 ± 0.93 27.45 ± 0.81 44.11 ± 0.35 2.27 ± 0.02 2.27 ± 0.08
3-SUAP 54.03 ± 0.54 28.49 ± 0.56 45.42 ± 0.32 2.55 ± 0.03 2.95 ± 0.08
5-SUAP 55.56 ± 0.57 28.87 ± 0.07 46.09 ± 0.10 2.56 ± 0.05 3.10 ± 0.05
FGSM [19] 53.82 ± 0.00 28.55 ± 0.00 38.10 ± 0.00 3.02 ± 0.00 3.14 ± 0.00
MI-FGSM [16] 80.76 ± 0.00 29.95 ± 0.01 35.46 ± 0.01 2.60 ± 0.00 3.41 ± 0.00
PGD [34] 93.61 ± 0.06 30.47 ± 0.12 38.17 ± 0.37 1.94 ± 0.05 2.53 ± 0.08
AutoAttack [13] 93.07 ± 0.00 31.79 ± 0.16 38.08 ± 0.27 1.91 ± 0.02 2.41 ± 0.02

Table 2: Performance of ℓ∞-attacks on a ResNet18 trained on ImageNet. Bold fonts highlight the best fooling rate
in universal (left), semi-universal (middle) and specific (right) attacks.

ATTACK ResNet18
UAP-PGD [49] 27.36 ± 0.00
FAST-UAP [15] 23.46 ± 0.25

ATTACK ResNet18
1-SUAP 83.17 ± 2.62
5-SUAP 88.98 ± 1.06
10-SUAP 87.24 ± 1.16

ATTACK ResNet18
FGSM [19] 84.53 ± 0.05
MI-FGSM [16] 90.04 ± 0.02
PGD [34] 94.99 ± 0.06
AutoAttack [13] 88.23 ± 0.05

describing the most common flaws to fool the classifier. The latter shed some light both on how the classifier operates
and on the existing similarities between the training instances. Future works will be devoted to the design of defense
mechanisms against semi-universal attacks as well as the derivation of the associated generalization bounds. Indeed, we
believe that such results open directions to improve the robustness of models against various and diverse attacks.
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Notations. For x ∈ RP and I ⊆ {1, . . . , P}, xI stands for the restriction of x to the indices in I.

A Stochastic solver

We propose an additional solver fully exploiting the finite-sum nature of the loss in Problem 1. To this regard, we begin
by rewriting it by means of the sample-wise losses ℓi, i.e.,

L(ε) = 1

n

n∑
i=1

ℓi(ε), with ℓi(ε) = max
l∈{1,...,L}

H(f(xi + εl), yi).

Hereafter, we resort to a stochastic solver based on the well-known variance reduction techniques (see [25, 54, 44]).
Since the main computational load comes from the backpropagation through the neural network, we favor the proxSAGA
algorithm [25] which does not require an additional loop over multiple epochs. The corresponding algorithmic solution
is summarized in Algorithm 2.

Algorithm 2 SUAP-ProxSAGA

Initialize ε(0) = [ε
(0)
l ]Ll=1

Set gi = ∇ℓi(ε(0)) for every i ∈ {1, . . . , n}
Set ḡ(0) = (1/n)

∑n
i=1 gi

for k = 0 to K − 1 do
Instant gradient computation
Uniformly pick a batch Ik ⊂ {1, . . . , n} of size b
gIk

=
∑

i∈Ik
∇ℓi(ε(k))

Projected gradient step
α(k) = 1

b (gIk
− g̃Ik

) + ḡ(k)

ε(k+1) = ProjBp(δ)(ε
(k) + γkα

(k))
Updates
ḡ(k+1) = 1

n (gIk
− g̃Ik

) + ḡ(k)

g̃Ik
= gIk

end for
return Semi-universal adversarial perturbations ε(K)

Such solver should become particularly useful to deal with large datasets by treating one sample at a time. We recall
below the convergence guarantees under the assumption of Lipschitz continuity.

Theorem 3 (J. Reddi et al. [25]). Suppose that∇L is Lipschitz continuous with Lipschitz constant β. Let {ε(k)}k∈N be
the sequence of Algorithm 2 with fixed step-size γk=γ ≤ 1/(5βn) and batch-size b=1. Then, for k uniformly sampled
from {1, . . . ,K}, the following holds:

E
[
∥Gγ(ε

(k))∥2
]
≤ 50βn2

5n− 2

L(ε⋆)− L(ε(0))
K

, (8)

where ε⋆ is a maximizer of L and Gγ : ε 7→ γ−1(ε− PBp(δ)(ε+ γ∇L(ε))) is the gradient mapping.

Note that Theorem 3 relies on the Lipschitz constant β whose calculation is out of reach. Instead, in practice we suggest
either to choose β large enough or to compute rough estimate at each iteration.

B About Theorem 2

The proof of Theorem 2 relies on Theorem 3.3 of Mohri et al. [37] recalled below.
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Theorem 3.3 of Mohri et al. [37]. For any distribution D on X × Y , for any set G of functions g : X × Y → [0, 1],
for any λ ∈ (0, 1], we have

P
S∼Dn

(
∀g ∈ G, E

(x,y)∼D
g(x, y)− 1

n

n∑
i=1

g(xi, yi)

≤ 2 E
S′∼Dn

E
σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(x′

i, y
′
i)

]
+

√
ln 1

λ

2n

 ≥ 1− λ, (9)

and P
S∼Dn

(
∀g ∈ G, E

(x,y)∼D
g(x, y)− 1

n

n∑
i=1

g(xi, yi)

≤ 2 E
σ∼Σn

[
sup
g′∈G

2

n

n∑
i=1

σig
′(xi, yi)

]
+ 3

√
ln 2

λ

2n

 ≥ 1− λ. (10)

Before proving Theorem 2 in Section B.2, we recall how we can obtain two-sided generalization bounds from Mohri
et al. [37]’s Theorem 3.3.

B.1 From one-sided to two-sided generalization bounds

Mohri et al. [37]’s Theorem 3.3 brings a one-sided generalization bound, i.e., an upper bound on E(x,y)∼D g(x, y)−
1
n

∑n
i=1 g(xi, yi). That being said, Theorem 2 provides a two-sided bound, i.e., an upper bound on the term∣∣E(x,y)∼D g(x, y)− 1

n

∑n
i=1 g(xi, yi)

∣∣. To do so, one common solution is to use the union bound (e.g. [35]). For the
sake of completeness, we state the two-sided bound associated to Theorem 3.3. of Mohri et al. [37] in the following
lemma.
Lemma 1 (Two-sided generalization bounds). For any distribution D on X ×Y , for any set G of functions g : X ×Y →
[0, 1], for any λ ∈ (0, 1], we have

P
S∼Dn

(
∀g ∈ G,

∣∣∣∣∣ E
(x,y)∼D

g(x, y)− 1

n

n∑
i=1

g(xi, yi)

∣∣∣∣∣
≤ 2 E

S′∼Dn
E

σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(x′

i, y
′
i)

]
+

√
ln 2

λ

2n

 ≥ 1− λ, (11)

and P
S∼Dn

(
∀g ∈ G,

∣∣∣∣∣ E
(x,y)∼D

g(x, y)− 1

n

n∑
i=1

g(xi, yi)

∣∣∣∣∣
≤ 2 E

σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(xi, yi)

]
+ 3

√
ln 4

λ

2n

 ≥ 1− λ. (12)

Proof. We can go through the exact same proof of Mohri et al. [37]’s Theorem 3.3 but with 1
n

∑n
i=1 g(xi, yi) −

E(x,y)∼D g(x, y) instead of E(x,y)∼D g(x, y)− 1
n

∑n
i=1 g(xi, yi). Hence, we obtain with probability at least 1−λ

2 over
S ∼ Dn

∀g ∈ G, 1

n

n∑
i=1

g(xi, yi)− E
(x,y)∼D

g(x, y)

≤ 2 E
S′∼Dn

E
σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(x′

i, y
′
i)

]
+

√
ln 2

λ

2n
, (13)

and ∀g ∈ G, 1

n

n∑
i=1

g(xi, yi)− E
(x,y)∼D

g(x, y)

≤ 2 E
σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(xi, yi)

]
+ 3

√
ln 4

λ

2n
. (14)
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Hence, by combining Equations (13) and (9) from a union bound (and with λ/2 instead of λ), we obtain Equation (11).
Similarly, from Equations (14) and (10), we get Equation (12).

B.2 Proof of Theorem 2

We are now ready to prove Theorem 2.

Theorem 2. For any distribution D on X×Y , for any loss function H : Rc × Y → [0, 1], for any model f : RP→Rc,
for any L∈N+, for any budget δ>0, for any ℓp-norm with p≥0, for any λ∈(0, 1], we have

P
S∼Dn

∀ε ∈ Bp(δ)L, ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2RS

[
Bp(δ)L

]
+ 3

√
ln 4

λ

2n

≥1−λ, (6)

and P
S∼Dn

∀ε ∈ Bp(δ)L, ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2 E

S′∼Dn
RS′

[
Bp(δ)L

]
+

√
ln 2

λ

2n

≥1−λ, (15)

where we define the Rademacher complexity [6] of the “family of perturbations” Bp(δ)L as

RS

[
Bp(δ)L

]
= E

σ∼Σn
sup

ε∈Bp(δ)L

[
1

n

n∑
i=1

σi max
εl∈ε

H(f(xi+εl), yi)

]
,

with σ={σi}ni=1∼Σn, and Σ being the Rademacher distribution, i.e., Σ(−1)= 1
2 and Σ(+1)= 1

2 .

Note that Equation (15) is not in the main paper and involves the Rademacher complexity defined by
ES′∼Dn RS′

[
Bp(δ)L

]
; the remarks in the main paper for Equation (6) also apply for Equation (15).

Proof. Given L > 0, we define the set of function G by

G =

{
g : (x, y) 7→ max

εl∈ε
H ′(f(x+ εl), y)

∣∣∣∣ ε = [ε1, . . . , εL] ∈ Bp(δ)L
}
.

By applying Lemma 1 on the set G, we have the desired results.

C Experimental settings

In this section, we further detail how the numerical experiments were conducted.

C.1 MNIST experiments

Data splitting and pre-processing. The 60K samples of the training set undergo random affine transformations
keeping the center invariant. To this effect, we use random rotations between [11.25,+11.25] degrees and a random
scaling selected in [−0.825,+0.825]. These deformed samples are used to learn f while we randomly pick 500 original
un-deformed images from the training dataset to learn the (semi-)universal attacks. The 10K images of the test set are
used to evaluate the performance of the attacks. All images are flatten into 784 dimensional rescaled vectors so that the
pixel intensity lies within [0, 1].

Model to attack. We consider a differentiable model satisfying the KŁ property assumed in Theorem 1 (see Remark 1).
To this effect, we resort to the simple multi-layer perceptron from [11] which manages to achieve under 1% test accuracy.
It is made of scaled hyperbolic tangent activation functions as well of an input layer, 8 hidden layers and an output
linear layer of sizes 784× 1000, 1000× 1000 and 1000× 10, respectively. The network is trained using a stochastic
gradient descent with batch size 100 with a learning rate linearly decreasing from 10−3 to 10−6 over 103 epochs.

C.2 CIFAR10 experiments

Data splitting and pre-processing. If not mentioned otherwise, we split CIFAR10 test set into 2K images for learning
(semi-)universal perturbations and 8K independent images for evaluating the attacks.

Model to attack. We consider the trained ResNet18 model from [45] augmented with an input normalizing layer of
channel-wise means (0.4914, 0.4822, 0.4465) and channel-wise standard deviations (0.2471, 0.2435, 0.2616).
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Figure 5: Training behavior of ℓ∞-based SUAP attacks on MNIST. The averaged training loss is reported for 1, 3, 5
and 10 universal perturbations along with the associated test fooling rate.

C.3 ImageNet experiments

Data splitting and pre-processing. We resort to the popular ILSVRC2012 validation subset of the ImageNet dataset.
The 50k images are randomly split into two halves. The first half is used to learn the (semi-)universal perturbations
while the second half is regarded as test set to evaluate the attacks. All images are resized into 256× 256 followed by a
cropping of size 224× 224 around the center and a rescaling of the pixels intensity into [0, 1]. Results are averaged
over 5 splits.

Model to attack. We analyze a pretrained ResNet18 model from the Torchvision library augmented with a normalizing
layer of mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225) achieving a test accuracy of 69.76%.

L-SUAP solver. Contrary to the previous experiments, we consider the ProxSAGA solver of Algorithm 2 in order to
learn the L-SUAP perturbations. The step-size and batch-size are set to γ = 0.05 and b = 1, respectively.

D Additional results

In the next sections, we provide complementary results on both MNIST and CIFAR10 datasets.

D.1 MNIST experiments

We analyze the training behavior of L-SUAP attacks with L ∈ {1, 3, 5, 10} universal perturbations learned with the
Algorithm 1. The experiment is repeated over 5 independent seeds and the averaged training loss is reported in Figure 5.
Independently of L, it shows the well-behaved increasing behavior of the loss along the number of epochs. In addition,
it supports the fact that having more universal perturbations does permit to achieve higher dissimilarity hence higher
loss values. This is seconded by the mean test fooling rate reported for each of the L-SUAP attacks since we observe an
increased fooling rate as L grows. On a side note, on this simple dataset, it is difficult to fool the studied network f ,
hence justifying the small fooling rates depicted in Figure 5.

D.2 CIFAR10 experiments

We report in Table 3 the performance comparison of both ℓ∞ and ℓ2-attacks with a maximum allowable budget of
δ = 8/255 and δ = 0.5, respectively.

16



Semi-Universal Adversarial Perturbations A PREPRINT

Table 3: Performance of attacks on a ResNet18 trained on CIFAR-10. Bold fonts highlight the best fooling rate in
universal (top), semi-universal (middle) and specific (bottom) attacks.

Attack ℓ∞-fooling rate (%) ℓ2-fooling rate (%)
UAP-PGD [49] 12.53 (± 0.60) 2.67 (± 0.21)
FAST-UAP [15] 11.16 (± 1.03) 2.53 (± 0.19)
CW-UAP [7] 13.85 (± 0.18) 2.77 (± 0.09)
1-SUAP 36.83 (± 0.93) 3.43 (± 0.26)
3-SUAP 54.03 (± 0.54) 4.93 (± 0.50)
5-SUAP 55.56 (± 0.57) 7.09 (± 1.22)
FGSM [19] 53.82 (± 0.00) N/A
MI-FGSM [16] 80.76 (± 0.00) N/A
PGD [34] 93.61 (± 0.06) 89.23 (± 0.02)
AutoAttack [13] 93.07 (± 0.00) 92.41 (± 0.01)
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