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RELAX AND PENALIZE: A NEW BILEVEL APPROACH TO
MIXED-BINARY HYPERPARAMETER OPTIMIZATION

A PREPRINT

Marianna De Santis∗ Jordan Frecon† Francesco Rinaldi‡ Saverio Salzo∗ Martin Schmidt§

ABSTRACT

In recent years, bilevel approaches have become very popular to efficiently estimate high-dimensional
hyperparameters of machine learning models. However, to date, binary parameters are handled by
continuous relaxation and rounding strategies, which could lead to inconsistent solutions. In this
context, we tackle the challenging optimization of mixed-binary hyperparameters by resorting to
an equivalent continuous bilevel reformulation based on an appropriate penalty term. We propose
an algorithmic framework that, under suitable assumptions, is guaranteed to provide mixed-binary
solutions. Moreover, the generality of the method allows to safely use existing continuous bilevel
solvers within the proposed framework. We evaluate the performance of our approach for a specific
machine learning problem, i.e., the estimation of the group-sparsity structure in regression problems.
Reported results clearly show that our method outperforms state-of-the-art approaches based on
relaxation and rounding.

1 Introduction

Nowadays, machine learning systems tend to incorporate an increasing number of hyperparameters with the purpose
of improving the overall performance of learning tasks and achieving a higher flexibility. Then, optimizing such
high-dimensional hyperparameters becomes a crucial step for devising efficient and fully parameter-free machine
learning systems. In recent years, bilevel approaches to hyperparameter optimization have become very popular as
an effective way to estimate high-dimensional hyperparameters [1, 2, 3, 6, 10, 16, 18]. On the other hand, in many
circumstances binary hyperparameters are included in the model to allow the pruning of the irrelevant variables or the
discovery of sparsity structures. Interesting examples are given by the pruning of large-scale deep learning models [22],
the identification of the group-sparsity structures in regression problems [8, 20], and learning the discrete structure of a
graph neural networks [7]. For these cases the usual optimization approach is that of relaxing the respective parameter
over the unit interval [0, 1], solve the continuous optimization problem, and then rounding the solution so to get a binary
output. This is essentially a heuristic, which overcomes the challenge of dealing with integer variables, but does not
offer any theoretical guarantee.

The aim of the present work is that of providing a more principled way of approaching mixed-binary hyperparameter
optimization.

Related works. In the context of machine learning, bilevel optimization problems with binary variables arise in
a number of situations. In [8] the estimation of group-sparsity structure in multi-task regression is addressed by
a mixed-binary bilevel optimization model, which is handled by a continuous relaxation and approximation of the
problem. The output of the optimization procedure is a vector of continuous variables, which are then rounded to
the closest binary values, so to provide the final grouping of the features. In Section 5, we tackle this same problem
and show the advantage of our approach. In the work [22], a new model pruning, based on bilevel optimization, is
proposed, where the upper level variable is a binary mask. The related iterative algorithm performs a gradient descent
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step on the continuous relaxation of the problem followed by a projection step onto a discrete set, which is indeed a
hard-thresholding operation. No convergence guarantees are provided.

Beyond the machine learning literature, there is a number of works related to mixed-integer bilevel programming (see,
e.g., Section 5.3 of the recent survey [14]). An important drawback one needs to take into account when applying those
methods to hyperparameter optimization problems is however their limited scalability. Common approaches like, e.g.,
the outer-approximation based method in [13], or the algorithm proposed in [17], which requires the global solution
of a significant number of mixed integer nonlinear programs, have indeed a prohibitive cost when the dimensionality
grows. Furthermore, it should be noted that they aim to achieve global optimality—an overly ambitious goal in the
context of machine learning applications.

Contributions and Outline. In this paper, we analyze more carefully the mixed-binary setting and propose a relax
and penalize method, which produces a mixed-binary output and relies on improved mathematical grounds. More
precisely, we consider in Section 3 a general mixed continuous-binary bilevel problem and show that it is equivalent, in
terms of global minima and minimizers, to a fully continuous and penalized optimization problem. Next, in Section 4,
we propose an algorithmic framework, which consists of iteratively solving a sequence of continuous and penalized
problems which, under suitable assumptions, is guaranteed to provide mixed-binary local solutions. The performance
of the proposed approach are quantitatively assessed on the estimation of the group structure in the group lasso
problem. Numerical experiments are reported in Section 5 and show how the relax and penalize method outperforms
state-of-the-art approaches based on relaxation and rounding. Finally, conclusions and perspectives are drawn in
Section 6.

Notation. For every integer n ≥ 1, [n] denotes the set {1, . . . , n}. We denote by ‖·‖ the Euclidean norm in Rn and by
‖·‖∞ the infinity norm, meaning ‖x‖∞ = max1≤u≤n|xi|. If x ∈ Rn and ρ > 0 we denote by Bρ(x) the closed ball in
Rn with center x and radius ρ, i.e., Bρ(x) = {x′ ∈ Rn : ‖x′ − x‖ ≤ ρ}. The standard (n− 1)-simplex is denoted by
∆n−1 = {x ∈ Rn+ :

∑n
i=1 xi = 1}. Also, � is the Hadamard product, meaning the component-wise multiplication of

vectors in Rd. If Ψ: Rn → R is a continuous function and Ω ⊆ Rn, we denote by argminΩ Ψ the set of minimizers of
Ψ over Ω and with a slight abuse of notation also the minimizer itself when it is unique.

2 Problem statement

We consider mixed-binary bilevel problems of the form

min
λ,θ

F (λ, θ, w(λ, θ)) (1a)

s.t. λ ∈ Λ ⊆ Rm, θ ∈ Θbin ⊆ {0, 1}p, (1b)
w(λ, θ) = argmin

w∈W (λ,θ)

f(λ, θ, w), (1c)

where F, f : Rm × Rp × Rd → R and W (λ, θ) ⊆ Rd. We note that the lower-level problem is supposed to admit a
unique solution and that the hyperparameters λ and θ are continuous and binary variables, respectively. In the context of
machine learning problems, the functions F and f often are the loss over a validation set and training set, respectively.
We will provide a major application of this situation in Section 5.

In the remainder of this paper we assume that the binary set Θbin is embedded in a larger continuous set Θ and that the
lower-level problem admits a unique solution also when θ ∈ Θ. Then, we can consider the following more compact
formulation

min
(λ,θ)∈Λ×Θbin

G(λ, θ) (2)

of the above problem, where we set G(λ, θ) := F (λ, θ, w(λ, θ)) and require that the following assumption holds.
Assumption 1.

(i) Λ ⊆ Rm is nonempty and compact.

(ii) Θbin := Θ ∩ {0, 1}p 6= ∅, where Θ ⊆ [0, 1]p is convex and compact and Θ \Θbin 6= ∅.

(iii) G : Λ×Θ→ R is continuous.

(iv) For all λ ∈ Λ, the map G(λ, ·) is Lipschitz continuous with constant L > 0 on Θ.

Assumption 1 can be met with appropriate hypothesis on the functions F and f . For instance, a sufficient condition for
(iii) is that the functions F and f are jointly continuous, the function f(λ, θ, ·) is strongly convex with a modulus of
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convexity which is uniform for every (λ, θ), and the set-valued mapping (λ, θ) 7→W (λ, θ) is closed and such that, for
every (λ̄, θ̄) ∈ Λ×Θ, dist(w(λ̄, θ̄),W (w, θ))→ 0 as (λ, y)→ (λ̄, θ̄) [4, Proposition 4.4]. Additional conditions can
ensure the validity of (iv) too (see, [4, Section 4.4].)

3 Restating the problem via a smooth penalty function

In order to deal with the binary variables in problem (2), we relax the integrality constraints on θ via a classic penalty
term. This leads to the continuous optimization problem

min
(λ,θ)∈Λ×Θ

G(λ, θ) +
1

ε
ϕ(θ) (3)

in which we use the penalty function

ϕ(θ) =

p∑
i=1

θi(1− θi). (4)

Note that the function in (4) is a smooth, concave, and quadratic function with the following properties:

∀ θ ∈ [0, 1]p : ϕ(θ) ≥ 0 and ∀ θ ∈ {0, 1}p : ϕ(θ) = 0.

This penalty has been introduced in [19] to define equivalent continuous reformulations of mixed-integer linear
programming problems. In Section A we give the main properties of this penalty function that we use to prove the main
results of this and the next section.

We start with a result establishing the equivalence of Problems (2) and (3) above in terms of global minimizers. It is in
line with a stream of works analyzing the use of concave penalty functions in the framework of nonlinear optimization
problems with binary/integer variables (see, e.g., [9, 11, 15] and references therein). For the reader’s convenience we
provide the proof of this result in the appendix.
Theorem 1. Suppose that Assumption 1 is satisfied. Then, there exists an ε̄ > 0 such that for all ε ∈ ]0, ε̄], problems (2)
and (3) have the same global minimizers, i.e.,

argmin
(λ,θ)∈Λ×Θbin

G(λ, θ) = argmin
(λ,θ)∈Λ×Θ

G(λ, θ) +
1

ε
ϕ(θ).

The conclusion of Theorem 1 is remarkable since it guarantees that despite the fact that (3) is a purely continuous
optimization problem, for ε sufficiently small, all of its global minimizers are mixed-binary feasible and are exactly the
global minimizers of the original problem (2).
Remark 1.

(i) Set Gε : Λ × Θ → R such that Gε(λ, θ) = G(λ, θ) + ε−1ϕ(θ) and let δΛ×Θbin
: Λ × Θ → R be the indicator

function of the set Λ×Θbin, i.e., the function that is zero on Λ×Θbin and +∞ otherwise. Then, it is easy to see
that Gε Γ-converges5 to G+ δΛ×Θbin

as ε→ 0. Moreover, the family of functions (Gε)ε>0 is clearly equicoercive
since they are all defined on the compact set Λ×Θ. Therefore, it holds

argmin
Λ×Θ

Gε → argmin
Λ×Θ

G+ δΛ×Θbin
= argmin

Λ×Θbin

G as ε→ 0

in the sense of set convergence. This is a standard result from variational analysis [5] and it is always true provided
that G and ϕ are continuous functions as well as that ϕ ≥ 0 and ϕ(θ) = 0 ⇔ θ ∈ Θbin holds.

(ii) In view of (i), which gives an asymptotic result, the statement of Theorem 1 is stronger in the sense that, for the
special function (4) and for ε small enough, argminΛ×ΘGε = argminΛ×Θbin

G holds.

The previous theorem provides a justification to address problem (3) instead of (2). However, because the objective
function in (3) is nonconvex, only local minimizers are computationally approachable. Thus, the idea is that of looking
for local minimizers of (3) which are also mixed-binary —since the global minimizers of (2) lie among them.

The next result is entirely new and addresses the issue of identifying mixed-binary local minimizers of the objective
in (3), providing a sufficient condition for that purpose.

5This type of convergence of functions is also known as epiconvergence.
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Theorem 2. Suppose that Assumption 1 holds. Let c ∈ ]0, 1/2[ and 0 < ε < (1 − 2c)/L. Moreover, let (λ̄, θ̄) be a
local minimizer of

G(λ, θ) +
1

ε
ϕ(θ) on Λ×Θ.

If dist∞(θ̄,Θbin) := infθ∈Θbin
‖θ̄ − θ‖∞ < c, then θ̄ ∈ Θbin.

Proof. Since dist∞(θ̄,Θbin) < c, there exists θ ∈ Θbin such that ‖θ̄ − θ‖∞ < c. Let

θt := (1− t)θ̄ + tθ = θ̄ + t(θ − θ̄) with t ∈ [0, 1].

In particular, ‖θt − θ̄‖∞ = t‖θ − θ̄‖∞ < tc ≤ c and θt ∈ Θ, since Θ is convex. By Lemma 3,

ϕ(θ̄)− ϕ(θt) ≥ (1− 2c)‖θt − θ̄‖ (5)

holds. Moreover, there exists ρ > 0 such that for all (λ′, θ′) ∈ Bρ(λ̄, θ̄) ∩ (Λ×Θ), it holds

G(λ̄, θ̄) +
1

ε
ϕ(θ̄) ≤ G(λ′, θ′) +

1

ε
ϕ(θ′).

Now, take t ∈ ]0, 1[ such that t < ρ/(c
√
p). Then, θt ∈ Θ and ‖θt − θ̄‖ ≤ √p‖θt − θ̄‖∞ <

√
p tc < ρ. Therefore,

(λ̄, θt) ∈ Bρ(λ̄, θ̄) ∩ (Λ×Θ) and we obtain

G(λ̄, θt)−G(λ̄, θ̄) +
1

ε
ϕ(θt)−

1

ε
ϕ(θ̄) ≤ L‖θt − θ̄‖+

1

ε
(ϕ(θt)− ϕ(θ̄))

(5)
≤ L‖θt − θ̄‖ −

1− 2c

ε
‖θt − θ̄‖

=

(
L− 1− 2c

ε

)
︸ ︷︷ ︸

<0

‖θt − θ̄‖. (6)

Moreover, if θ̄ 6∈ {0, 1}p, since θ ∈ {0, 1}p, we have ‖θ − θ̄‖ > 0 and hence ‖θt − θ̄‖ > 0 for t > 0. Thus, (6) is
strictly negative and it holds

G(λ̄, θt) +
1

ε
ϕ(θt) < G(λ̄, θ̄) +

1

ε
ϕ(θ̄),

which gives a contradiction. Thus, necessarily θ̄ ∈ {0, 1}p.

Remark 2.

(i) Theorem 2 essentially says that, if ε is small enough, within the distance of 1/2 measured with the infinity norm,
there are no other local minimizers of (3) than the ones that are mixed-binary feasible.

(ii) Note that it does not make much sense to consider local minimizers of the function G over Λ×Θbin, since any
point in Θbin is an isolated point and thus one can find a corresponding local minimizer for each one of them.

4 An iterative penalty method

We now present an iterative method addressing problem (2). The idea is that of solving a sequence of problems of the
form (3), indexed with k, with decreasing parameters εk. Hence, the problem to be solved in each iteration reads

min
(λ,θ)∈Λ×Θ

G(λ, θ) +
1

εk
ϕ(θ). (Pk)

Then, thanks to Theorem 1, it is clear that after a finite number of iterations the original mixed-binary optimization
problem and the relaxed and penalized one (Pk) become equivalent in terms of global minimizers. Moreover, as we
have already discussed in the previous section, in practice we can only target the computation of local minimizers, but
we can restrict the search to the mixed-binary ones. In the following, we make this strategy more precise.
Theorem 3. Suppose that Assumption 1 holds. Let (εk)k∈N be a vanishing sequence of positive numbers and, for every
k ∈ N, let (λk, θk) be a local minimizer of (Pk). Then,

lim inf
k→+∞

dist∞(θk,Θbin) < 1/2 ⇒ ∃ k ∈ N s.t. θk ∈ Θbin.

Moreover, if θk ∈ Θbin, then we have that λk is a local minimizer of

min
λ∈Λ

G(λ, θk).

4
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Algorithm 1: Penalty method

Input: Problem (2), ε0 > 0, β ∈ ]0, 1[.
1 for k = 0, 1, 2, . . . do
2 Let (λk, θk) be a solution (either local or global) of problem (Pk).
3 if θk /∈ {0, 1}p then
4 update εk+1 = βεk

5 else
6 return (λk, θk).

Proof. Suppose that lim inf
k→+∞

dist∞(θk,Θbin) < 1/2 and let c > 0 such that lim inf
k→+∞

dist∞(θk,Θbin) < c < 1/2. Then,

there exists a subsequence (θnk)k∈N such that

∀ k ∈ N : dist∞(θnk ,Θbin) < c and εnk → 0.

Thus, there exists k ∈ N such that

dist∞(θnk ,Θbin) < c and εnk
<

1− 2c

L

and this, in view of Theorem 2, gives that θnk ∈ Θbin. Concerning the second part of the statement, suppose that
θk ∈ Θbin, where (λk, θk) is a local minimizer of (Pk). Then, θk ∈ {0, 1}p and there exists ρk > 0 such that

∀ (λ, θ) ∈ Bρk(λk, θk) ∩ (Λ×Θ): G(λk, θk) +
1

εk
ϕ(θk) ≤ G(λ, θ) +

1

εk
ϕ(θ).

Therefore, taking θ = θk in the above inequality and noting that ϕ(θk) = 0, we have

∀λ ∈ Bρk(λk) ∩ Λ: G(λk, θk) +
1

εk
ϕ(θk)︸ ︷︷ ︸

=0

≤ G(λ, θk) +
1

εk
ϕ(θk)︸ ︷︷ ︸

=0

,

which shows that λk is a local minimizer of G(·, θk) over Λ.

Remark 3.

(i) In the experiment given in Section 5, we checked that the condition considered in Theorem 3 always occurs,
meaning that the distance dist∞(θk,Θbin), where θk was obtained by solving problem (Pk) via a gradient-
based subroutine, remains well-below the threshold 1/2.

(ii) We note that there might indeed exist points θ ∈ Θ such that dist∞(θ,Θbin) > 1/2. For instance, if we take
the standard (p− 1)-simplex

Θ = ∆p−1 =

{
θ ∈ Rp+ :

p∑
i=1

θi = 1

}
,

we have that {
θ ∈ Θ : dist∞(θ,Θbin) ≥ 1/2

}
= ∆p−1 ∩ [0, 1/2]p, (7)

which for p = 3 is the full equilateral triangle with vertices (e1 + e2)/2, (e1 + e3)/2 and (e2 + e3)/2, where
the ei’s are the vectors of the canonical basis of Rp. In general, the set in (7) is a polytope of dimension p− 1
with 2p facets and (p(p− 1)/2) vertices.

The method is formally given in Algorithm 1.

5 Application to the estimation of the group-structure in regression problems

We address the problem of estimating the group structure in group-sparse regression problems. First, we detail in
Section 5.1 how this problem fits our mathematical formulation. Then, in Section 5.2 we provide numerical experiments
on both synthetic data datasets.

5
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5.1 Problem setting and formulation

Given an output vector y ∈ Rn and a design matrix X ∈ Rn×d, the group lasso problem can be formulated as follows

min
w∈Rd

1

2
‖Xw − y‖2 + λ

L∑
l=1

‖θl � w‖2,

where λ > 0 is a regularization parameter and θl is a binary vector (with entries in {0, 1}) indicating the features
(components) of w belonging to the lth group, meaning Gl = {i ∈ [d] : θi,l = 1}6. In case of nonoverlapping groups
it is assumed that

∑L
l=1 θj,l = 1 for every j ∈ [d]. In the classic literature on the topic the groups are assumed to be

known a priori [21, 23], but often in practice there is no clue about the structure of the groups and actually the problem
is to infer this group structure from the data. However, this amounts to estimating the binary variables θl’s, which in
general poses a challenge.

Continuous relaxation. In view of the discussion above, in the related literature a common approach is to relax the
problem allowing the θl’s to vary in the continuum [0, 1]d. This approach was followed in [8], in which the bilevel
optimization problem

min
θ∈Θ

1

T

T∑
t=1

Ct(wt(λ, θ)), with Θ =
{
θ ∈ [0, 1]d×L :

L∑
l=1

θl = 1d

}
= (∆L−1)d,

and w(λ, θ) = argmin
(w1,...,wT )∈Rd×T

1

T

T∑
t=1

(
1

2
‖Xtwt − yt‖2 + λ

L∑
l=1

‖θl � wt‖2 +
η

2
‖wt‖2

) (8)

is proposed, where (Xt, yt)1≤t≤T defines T regression problems in which the regressors share the same group-sparsity
structure and Ct is a smooth cost function acting as a validation error for the t-th task. Note that in this formulation, λ
is supposed to be fixed (possibly determined by a cross-validation procedure). The regularization terms η‖wt‖2, with
η � 1, are added to ensure uniqueness of the solution for the lower level problem and to devise a dual algorithmic
procedure generating a sequence (w(q)(λ, θ))q∈N with smooth updates (w.r.t. θ) such that w(q)(λ, θ) → w(λ, θ)
uniformly on Θ as q → +∞ (see [8, Section 3.2]). Ultimately, the groups are estimated by solving the problem

min
θ∈Θ

1

T

T∑
t=1

Ct(w
(q)(λ, θ)),

with q large enough, and by appropriately thresholding (a posteriori) the solution θ in order to recover binary variables
θl’s.

Proposed method. Our general approach, as described in Section 4, allows to bypass the last thresholding step and to
directly address the more challenging problem

min
(λ,θ)∈Λ×Θbin

1

T

T∑
t=1

Ct(w
(q)(λ, θ)), with


Λ = [λmin, λmax] with 0 < λmin < λmax,

Θbin =
{
θ ∈ {0, 1}d×L : ∀ j ∈ [d]

L∑
l=1

θj,l = 1
}
,

(9)

which also involve the estimation of the regularization parameter λ. Now, since w(q)(λ, θ) is smooth w.r.t. θ, the
objective in (9) satisfies Assumption 1 and hence, in view of Theorem 1 and Theorem 3, we can consider the relaxed
and penalized version of problem (9), that is

min
(λ,θ)∈Λ×Θ

1

T

T∑
t=1

(
Ct(w

(q)(λ, θ)) +
1

ε
ϕ(θ)

)
, (10)

and state that, if ε is small enough, the two problems (9) and (10) share the same global minimizers. By leveraging this
equivalence, we study in the next section the added benefits of the proposed Algorithm 1.
Remark 4. According to [8, Theorem 3.1] we have that w(q)(λ, θ)→ w(λ, θ) as q → +∞ uniformly on Λ×Θbin, so
that, similarly to [8, Theorem 2.1], one can prove that problem (9) converges as q → +∞ to problem

min
(λ,θ)∈Λ×Θbin

1

T

T∑
t=1

Ct(w(λ, θ))

in terms of optimal values and sets of global minimizers. This provides a justification for addressing problem (9).
6The vectors θl are thought as columns of a matrix d× L

6



Relax and penalize: a new bilevel approach to mixed-binary hyperparameter optimization A PREPRINT

θ1
θ5
θ10

Oracle

θ1
θ5
θ10

Bilevel

θ1
θ5
θ10

Bilevel-thr

0 20 40 60 80

Features

θ1
θ5
θ10

MIB

(a) Learned groups θ> = [θl,j ] l∈{1,...,10}
j∈{1,...,100}

10−3 10−2 10−1 100

Regularization parameter λ

0.5

1.0

1.5

2.0

V
a
li

d
at

io
n

er
ro

r Bilevel

MIB

(b) Validation error

Figure 1: Comparison of the proposed approach (MIB) with the one given in [8] (Bilevel).

5.2 Numerical experiments

In this section, we provide some preliminary numerical experiments on the estimation of group-sparsity structure
detailed in Section 5.1. We compare our approach with the one proposed in [8], addressing the same bilevel problem
that is, we optimize only over the hyperparameter θ, while leaving the scalar hyperparameter λ to be determined by
cross-validation. Details are given below.

The experimental setting is similar to that of [8] but differs by two aspects to spice up the problem. First, we consider
random groups of possibly very different sizes. Second, we stand in a setting made of few tasks T which was shown
in [8] to be critical. In particular, we restrict to T = 50 which is 10 times less than the setting of [8]. We follow the next
procedure to generate the training, validation and test datasets.

Synthetic dataset generation. We consider the problem of Section 5.1 where each task amounts to predict an oracle
regressor w? ∈ Rd, made of d = 100 features, from n = 50 observations. Each regressor yields a group structure
dictated by L = 10 oracle groups {Gl}Ll=1 randomly generated with largely different sizes. An example is provided
in Figure 1a (top panel) where the L groups form a partitioning of the d features. For instance, the first and second
feature belong to G1 and G2, respectively, whereas the next 17 features belong to G3. For every task t ∈ {1, . . . , T}, we
generate the oracle regressor w?t and the data (Xt, yt) as follows. The regressor w?t is generated such that its values
are non-zero in at most 2 groups chosen at random, the design matrix Xt ∈ Rn×d is randomly drawn according to a
standard normal distribution and then normalized column-wise, and the output yt is such that yt ∼ N (Xtw

?
t , 0.1Id).

Validation and test sets are generated similarly.

Algorithmic setting. We implement the framework of Algorithm 1 by solving a sequence of optimization problems
of type (10) w.r.t. θ only and with ε0 = ∞, ε1 = 103 and εk+1 = 0.5εk for every k ∈ {1, . . . ,K = 10}. For each
problem of type (10), we use the same differentiable algorithm of [8] for solving the lower-level problem in (8) with
η = 10−3 and q = 500 inner iterations. Whereas, for the upper optimization in (10), since the proposed framework
is general enough to handle any algorithm, here we resort to Adam [12]. We embrace the finite-sum nature of the
objective in (10) by setting the batch size to 10 and the maximum number of epochs equal to 500. The step-size is set to
10−2, the weight decay to 0 and the running average coefficients are kept by default, i.e., (0.9, 0.999). As for the model
proposed in [8], for a fair comparison, we let algorithm Adam run for a maximum number of 500× (K + 1) epochs.

Results. Both methods are run on 5 different realizations multiple times for 10 different values of λ equally spaces, in
logarithmic scale, in the interval [10−3, 10]. The averaged validation errors, as functions of λ, are reported in Figure 1b
and are used to perform cross-validation of λ. Once the best λ is selected, we illustrate the recovered groups in Figure 1a.
In the second and third rows are reported the relaxed and relaxed and rounded solution of [8], respectively. In the last
row, we report the proposed estimate, coined MIB.

In addition, the two methods are compared according to two performance measures: the test error and the reconstruction
error, that is (1/d)‖w−w?‖2F . The averaged results are reported in Table 1. These results clearly show that our method
outperforms the relaxed and rounding strategy.
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Table 1: Test performance
Method Test error Reconstruction error

MIB 0.5487± 0.0522 0.2955± 0.0459
Bilevel 0.5668± 0.0626 0.3162± 0.0535
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G(�, ·)

Figure 2: Illustration of the loss landscape. Adding the penalty ϕ to G allows to match the global minima with the
oracle solutions (θ1,2 = 0, θ1,1 = 1) and (θ1,2 = 1, θ1,1 = 0).

Further insights about the added penalty. We perform some small scale experiment to visualize the effect of the
penalization term ϕ. We consider a two-dimensional problem (i.e., d = 2) with only L = 2 groups. In Figure 2 (left
panel), we show the contour lines of the original objective loss landscape, which has two global minimizers at the top
left and bottom right corners. In Figure 2 (right panel), we illustrate how the loss landscape changes with the added
penalty while preserving the global minimizers.

6 Conclusion

In this paper, we studied the idea of relaxing the integrality constraints and using a penalty term to handle mixed-binary
bilevel optimization problems arising in hyperparameter tuning of machine learning systems. Besides a result concerning
the equivalence in terms of global minimizers, sufficient conditions for identifying mixed-binary local minimizers are
stated. These theoretical results naturally lead to devise a penalty method that is, under suitable assumptions, guaranteed
to provide mixed-binary solutions. The novel approach is shown to outperform classic approaches based on relaxation
and rounding using the example of the group lasso problem.
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Supplementary material
In this part we provide technical results we used in the paper and the proof of Theorem 1.

A Auxiliary results

In this section, we give a number of technical results used throughout the paper related to the penalty function ϕ. We
recall that ϕ : [0, 1]p → R is defined as

ϕ(θ) =

p∑
i=1

θi(1− θi).

Moreover, we denote by [p] the set {1, . . . , p} and by ‖·‖ the Euclidean norm in Rp. Occasionally, we will also used
the following norms

‖θ‖1 =

p∑
i=1

|θi| and ‖θ‖∞ = max
1≤i≤p

|θi|.

Lemma 1. Let ψ : [0, 1]→ R be such that

∀ t ∈ [0, 1] : ψ(t) = t(1− t).
Let σ ∈ ]0, 1/2]. Then, for every t1, t2 ∈ [0, 1] we have∣∣∣∣ t1 + t2

2
− 1

2

∣∣∣∣ ≥ σ =⇒ |ψ(t2)− ψ(t1)| ≥ 2σ|t2 − t1|.

Proof. Let t1, t2 ∈ [0, 1]. One can easily check that

ψ(t2)− ψ(t1) = (1− (t1 + t2))(t2 − t1).

Therefore,

|ψ(t2)− ψ(t1)| = |t1 + t2 − 1||t2 − t1| = 2

∣∣∣∣ t1 + t2
2

− 1

2

∣∣∣∣|t2 − t1| ≥ 2σ|t2 − t1|.

Lemma 2. Let σ ∈ ]0, 1/2] and θ, θ′ ∈ [0, 1]p be such that the following holds:

∀ i ∈ [p] : θ′i 6= θi =⇒
∣∣∣∣θi + θ′i

2
− 1

2

∣∣∣∣ ≥ σ and
∣∣∣∣θ′i − 1

2

∣∣∣∣ ≤ ∣∣∣∣θi − 1

2

∣∣∣∣.
Then, ϕ(θ′)− ϕ(θ) ≥ 2σ‖θ′ − θ‖.

Proof. Let θ, θ′ ∈ [0, 1]p be as in the statement and let I = {i ∈ [p] | θi 6= θ′i}. Then,

∀ i ∈ I :

∣∣∣∣θi + θ′i
2

− 1

2

∣∣∣∣ ≥ σ and ψ(θi) ≤ ψ(θ′i)

and hence, by Lemma 1, we have

ϕ(θ′)− ϕ(θ) =
∑
i∈I

ψ(θ′i)− ψ(θi)

=
∑
i∈I
|ψ(θ′i)− ψ(θi)| ≥ 2σ

∑
i∈I
|θ′i − θi|

= 2σ‖θ′ − θ‖1 ≥ 2σ‖θ′ − θ‖,
where we used ‖·‖ ≤ ‖·‖1 for the last inequality.

Remark 5. Lemma 2 says that if the components of the mid point (θ + θ′)/2 are bounded away from 1/2 and the
componentwise distance from θ to 1/2 is larger than that of θ′ to 1/2, then ϕ(θ′)− ϕ(θ) can be bounded from below
by ‖θ′ − θ‖; up to a multiplicative constant.
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Remark 6. The conditions on θ and θ′ required by Lemma 2 are satisfied if

∀ i ∈ [p] : θi 6= θ′i =⇒


(θi − 1/2)(θ′i − 1/2) ≥ 0,

|θ′i − 1/2| ≤ |θi − 1/2|,
2σ ≤ |θi − 1/2|.

Indeed, in such case we have∣∣∣∣θi + θ′i
2

− 1

2

∣∣∣∣ =
1

2
|θi + θ′i − 1|

=
1

2

∣∣∣∣θi − 1

2
+ θ′i −

1

2

∣∣∣∣ (∗)
=

1

2

(∣∣∣∣θi − 1

2

∣∣∣∣+

∣∣∣∣θ′i − 1

2

∣∣∣∣) ≥ 1

2

∣∣∣∣θi − 1

2

∣∣∣∣ ≥ σ,
where the equality in (∗) is due to the fact that{

(θi − 1/2)(θ′i − 1/2) ≥ 0

|θ′i − 1/2| ≤ |θi − 1/2| =⇒
(
θi ≤ θ′i ≤ 1/2 or θi ≥ θ′i ≥ 1/2

)
.

Corollary 1. Let σ ∈ ]0, 1/2] and θ ∈ {0, 1}p. Then

∀ θ′ ∈ [0, 1]p : ‖θ′ − θ‖ ≤ 1− 2σ =⇒ ϕ(θ′) ≥ 2σ‖θ′ − θ‖.

Proof. Let θ ∈ {0, 1}p and θ′ ∈ [0, 1]p. We will check the conditions in Lemma 2. Let i ∈ [p]. Since |θi − 1/2| = 1/2,
the condition |θ′ − 1/2| ≤ |θi − 1/2| is automatically satisfied. Now, we note that

θi = 0 =⇒
∣∣∣∣θi + θ′i

2
− 1

2

∣∣∣∣ =

∣∣∣∣θ′i2 − 1

2

∣∣∣∣ =
1

2
|θ′i − 1| = 1

2
(1− |θ′i − θi|)

θi = 1 =⇒
∣∣∣∣θi + θ′i

2
− 1

2

∣∣∣∣ =

∣∣∣∣θ′i2
∣∣∣∣ =

1

2
|θ′i| =

1

2
(1− |θ′i − θi|).

Therefore, ∣∣∣∣θi + θ′i
2

− 1

2

∣∣∣∣ ≥ σ ⇐⇒ 1− |θ′i − θi| ≥ 2σ ⇐⇒ |θ′i − θi| ≤ 1− 2σ

and the first condition in Lemma 2 is then equivalent to the condition ‖θ′ − θ‖∞ ≤ 1− 2σ. The statement follows by
recalling that ‖·‖∞ ≤ ‖·‖.
Remark 7. It is clear from the proof of Corollary 1 that in fact it holds

∀ θ′ ∈ [0, 1]p : ‖θ′ − θ‖∞ ≤ 1− 2σ =⇒ ϕ(θ′) ≥ 2σ‖θ′ − θ‖.
Lemma 3. Let θ ∈ {0, 1}p, θ̄ ∈ [0, 1]p, and c ∈ R be such that ‖θ − θ̄‖∞ < c < 1

2 . Let

θt = (1− t)θ̄ + tθ with t ∈ [0, 1].

Then
ϕ(θ̄)− ϕ(θt) ≥ (1− 2c)‖θt − θ̄‖.

Proof. Since |θi − θ̄i| < c < 1
2 holds for all i = 1, . . . , n, we have

1

2
=

∣∣∣∣θi − 1

2

∣∣∣∣ ≤ |θi − θ̄i|+ ∣∣∣∣θ̄i − 1

2

∣∣∣∣ < c+

∣∣∣∣θ̄i − 1

2

∣∣∣∣,
which implies ∣∣∣∣θ̄i − 1

2

∣∣∣∣ > 1

2
− c.

Moreover, since θi ∈ {0, 1} and |θ̄i − θi| < c < 1
2 , we have{

θi = 0 =⇒ θi = 0 ≤ θ̄i < c < 1
2

θi = 1 =⇒ 1
2 < 1− c < θ̄i ≤ 1 = θi
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and, hence, since θti is between θi and θ̄i, it holds∣∣∣∣θti − 1

2

∣∣∣∣ ≥ ∣∣∣∣θ̄i − 1

2

∣∣∣∣ > 1

2
− c

so that ∣∣∣∣θti + θ̄i
2

− 1

2

∣∣∣∣ =

∣∣∣∣12(θti + θ̄i − 1)

∣∣∣∣ =
1

2

∣∣∣∣(θti − 1

2

)
+

(
θ̄i −

1

2

)∣∣∣∣
=

1

2

(∣∣∣∣θti − 1

2

∣∣∣∣+

∣∣∣∣θ̄i − 1

2

∣∣∣∣) ≥ ∣∣∣∣θ̄i − 1

2

∣∣∣∣ > 1

2
− c.

Therefore, by Lemma 2, ϕ(θ̄)− ϕ(θt) ≥ (1− 2c)‖θt − θ̄‖ holds.

B Proof of Theorem 1

For the sake of brevity we set

S = argmin
(λ,θ)∈Λ×Θbin

G(λ, θ) and S(ε) = argmin
(λ,θ)∈Λ×Θ

G(λ, θ) +
1

ε
ϕ(θ).

Recall that Θbin = Θ ∩ {0, 1}p. Let ρ ∈ ]0, 1[ and let ε̂ ∈ ]0, (1− ρ)/L[. We define the open set

U =
⋃

θ∈Θbin

Bρ(θ),

where ρ is chosen small enough so to ensure that Θ \ U 6= ∅7. Let θ̄ be a minimizer of ϕ over the compact set Θ \ U .
Then, clearly

∀ θ′ ∈ Θ \ U : ϕ(θ′) ≥ ϕ(θ̄) > 0. (11)
(Note that, since θ̄ /∈ U , then θ̄ /∈ {0, 1}p, and hence there exists i ∈ [p] such that θ̄i ∈ ]0, 1[, which implies that
ϕ(θ̄) ≥ θ̄i(1− θ̄i) > 0.) Thus, since

lim
ε→0+

1

ε
ϕ(θ̄) = +∞

there exists ε̃ ∈ ]0, ε̂] such that

∀ ε ∈ ]0, ε̃] :
1

ε
ϕ(θ̄) > sup

Λ×Θbin

G− inf
Λ×(Θ\U)

G. (12)

Now, we let ε ∈ ]0, ε̃] and show that S(ε) ⊂ Θbin. Let (λ∗, θ∗) ∈ S(ε) and suppose, by contradiction, that
(λ∗, θ∗) /∈ Θbin. We can have the following two cases:

(a) Let θ∗ ∈ U . Then, there exists θ ∈ Θbin such that θ∗ ∈ Θ ∩ Bρ(θ). Thus, in view of Assumption 1 and
Corollary 1, we have

G(λ∗, θ)−G(λ∗, θ∗) ≤ L‖θ∗ − θ‖ < 1− ρ
ε
‖θ∗ − θ‖ ≤ 1

ε
ϕ(θ∗) =

1

ε
ϕ(θ∗)− 1

ε
ϕ(θ)

and hence
G(λ∗, θ) +

1

ε
ϕ(θ) < G(λ∗, θ∗) +

1

ε
ϕ(θ∗),

which yields a contradiction since (λ∗, θ∗) is a global minimizer of Problem (3).
(b) Let θ∗ /∈ U . Then (λ∗, θ∗) ∈ Λ× (Θ \ U) and hence, recalling (11) and (12), we have

G(λ∗, θ∗) +
1

ε
ϕ(θ∗) ≥ inf

Λ×(Θ\U)
G+

1

ε
ϕ(θ∗)

≥ inf
Λ×(Θ\U)

G+
1

ε
ϕ(θ̄)

> sup
Λ×Θbin

G

≥ G(λ, θ) +
1

ε
ϕ(θ)︸︷︷︸

=0

7This means that ∃ θ∗ ∈ Θ such that for every θ ∈ Θbin it holds ‖θ − θ∗‖ > ρ. This condition is met if we pick θ∗ ∈
Θ \ {0, 1}p (see Assumption 1(ii)) and (taking into account that Θbin = Θ ∩ {0, 1}p is a finite set) choose ρ such that 0 < ρ <
infθ∈Θbin‖θ − θ

∗‖.
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for any (λ, θ) ∈ Λ×Θbin ⊆ Λ×Θ, which gives again a contradiction.

Thus, in both cases we get a contradiction and therefore necessarily (λ∗, θ∗) ∈ Λ×Θbin. Now, if we take (λ∗, θ∗) ∈
S(ε), since (λ∗, θ∗) ∈ Λ×Θbin, we have

G(λ∗, θ∗) +
1

ε
ϕ(θ∗)︸ ︷︷ ︸

=0

≤ G(λ, θ) +
1

ε
ϕ(θ)︸︷︷︸

=0

∀ (λ, θ) ∈ Λ×Θbin ⊆ Λ×Θ.

Therefore, for all (λ, θ) ∈ Λ × Θbin, G(λ∗, θ∗) ≤ G(λ, θ), meaning (λ∗, θ∗) ∈ S. Vice versa, let (λ∗, θ∗) ∈ S.
Choosing (λ̃∗, θ̃∗) ∈ S(ε), since (λ̃∗, θ̃∗) ∈ Λ×Θbin, we have

G(λ∗, θ∗) +
1

ε
ϕ(θ∗)︸ ︷︷ ︸

=0

= G(λ∗, θ∗) ≤ G(λ̃∗, θ̃∗)

≤ G(λ̃∗, θ̃∗) +
1

ε
ϕ(θ̃∗) = min

(λ,θ))∈Λ×Θ
G(λ, θ) +

1

ε
ϕ(θ).

Thus, (λ∗, θ∗) ∈ S(ε).
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