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ABSTRACT

We present a framework based on bilevel optimization for learning multilayer, deep data representa-
tions. On the one hand, the lower-level problem finds a representation by successively minimizing
layer-wise objectives made of the sum of a prescribed regularizer, a fidelity term and a linear function
depending on the representation found at the previous layer. On the other hand, the upper-level
problem optimizes over the linear functions to yield a linearly separable final representation. We
show that, by choosing the fidelity term as the quadratic distance between two successive layer-wise
representations, the bilevel problem reduces to the training of a feedforward neural network. Instead,
by elaborating on Bregman distances, we devise a novel neural network architecture additionally
involving the inverse of the activation function reminiscent of the skip connection used in ResNets.
Numerical experiments suggest that the proposed Bregman variant benefits from better learning
properties and more robust prediction performance.

1 Introduction

The past decades have seen an overwhelming interest in neural networks due to their empirical success in numerous
and disparate applications, ranging from medical imaging [Zhou et al.l 2019, |[Lassau et al.| |2021] to self driving
vehicles [Blin et al., 2019} |Grigorescu et al., | 2020], among others. Consequently, they have received a great interest from
the machine learning community (see, e.g., [Maggu et al.l[2020] and references therein). A key aspect of deep neural
networks is their ability to learn a representation from raw inputs by alternating linear transformations and non-linear
operations. In this paper, rather than directly writing the representation mapping as a prescribed compositional form, we
present a framework to learn the functional form of the representation from the perspective of bilevel optimization [see
Franceschi et al., [2018|, [Liu et al.,[2019, |Grazzi et al., [2020, and references therein]. Within this framework, the lower-
level problem performs feature representation while the upper-level problem optimizes the representation mapping. A
main insight is to define the representation as the successive minimization of multiple learnable objective functions.
The latter are formed by summing a bilinear parametric function and prescribed convex functions. We show how this
iterative scheme naturally includes standard feed-forward neural networks and gives rise to novel multilayer networks.

Previous Work. Bilevel optimization formulations have recently been devised in the setting of meta-learning and
hyperparameter optimization [Grazzi et al.l 2020} [Franceschi et al.,[2018]]. Probably most related to our work is [Com;-
bettes and Pesquet, |2020]] where the authors have shown that a wide range of activation operators are actually proximity
operators. In addition, the authors have provided a thorough analysis with tools from monotone operator theory in
order to study a class of neural networks and their asymptotic properties. Feedforward networks have been studied
by Bibi et al.| [2019] who have also established that the forward pass through one feedforward layer is equivalent to a
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single step of a forward-backward algorithm. In addition, recent studies have built deep models by unrolling particular
optimization algorithms [Monga et al., 2020, Bertocchi et al., [2020].

Contributions and Organization. In Section 2] we present the proposed multilayered bilevel framework and in
particular the class of layerwise objectives addressed throughout the paper. The latter are formed by summing a linear
term, a convex regularizer and a distance measuring the closeness with the representation found at the previous layer.
From this, we show in Section 3] that, for some quadratic distance and appropriate regularizer, the representation found
at each layer reduces to a feedforward update. Next, by elaborating on Bregman distances, in Section 4] we propose the
Bregman feedforward layer, a new type of neural network layer, which additionally involves the inverse of the activation
operator. This setting provides a novel view on neural networks which allows us to interpret activation operators as
Bregman projections as opposed to proximity operators. The practical benefits of this new type of layers are assessed
on both synthetic and real datasets in Section [5|by extending multilayer perceptrons and residual networks.

Notations. Let X’ and ) be two Hilbert spaces. For every lower semicontinuous extended real-valued function
f: X — RU {+oeo}, we denote by df the subdifferential of f and by V; f the gradient of f with respect to the j-th
variable. In addition, we let [}(X') be the space of functions from X to | — oo, +00] which are closed proper and
convex, and B(X,)) be the space of bounded operators from X to ). Also let D(X) be the space of functions
f: X = ]—o0,+00] which are proper, lower semicontinuous, definable on an o-minimal structure on R, large enough to
include most of the Bregman divergences used in applications [Attouch et al.l 2010]], locally Lipschitz continuous and
subdifferentially regular. For n € IN%, we let [n] = {1,..., N}. For every set C we denote by int C the interior of C.

2 Multilayered Bilevel Framework

In this section, we present our bilevel framework for representation learning.

Given some training data set {x;,y;}!_; made of n samples, we propose to learn a representation mapping h such that,
for every i € [n], the learned features h(x;) from the input data x; € R are more amenable for predicting y; € R In
other words, this means that the predicted target 9; can be written as a simple transformation i) € B (RY, RC) of h(x;),
i.e., 9; = P(h(x;)). The transformation 1 can model a large variety of operations popularly used such that a simple
linear layer or a linear layer followed by a softmax operator. The closeness between 7; and the true target y; is measured
by a given loss function ¢ such as the quadratic loss (for regression) or the cross-entropy (for classification) to name a
few.

Similarly to neural networks, we define the learned representation h(x;) through a sequence {zgl)}lL:_O1 of L € N*
intermediate representations of x;. A key feature of our framework is to implicitly learn zgl) by minimizing an objective

function depending on zgl_l)

scheme.

. More formally, we consider that the representation is issued from the following learning

Z(O) =Xj

forl—Ol .L-1

zi.lﬂ) =argmin £(z, zgl)) ey

zelR4
(L)
h(xj) = z;
This gives rise to a discrete dynamical system where £; describes the layer-dependence of the representations. Here, we
assume that each of the objective can be split into three components, i.e.,

Klzz ﬁzz +Dzz)+g() 2)

playing distinct roles. Firstly, f; € F(R R? x RY), where .7-" (IRd x R?) models a class of functions to be specified in

+1)

Deﬁmtlon L which encourages some peculiar solution z by judging upon the representation at the previous layer

O]

5- ), Secondly, D(:, El)) € D(IRY) is a distance measuring the closeness with z;'. As such, it is acts as a data-fidelity

term ensuring some relationship between two successive layer-wise representations. Lastly, g € IH(RY) is a simpl
function acting as a regularizer. For instance, g can promotes sparse solutions or constrain the solution to live in some
manifold.

1Sirnple is meant in the sense that its proximity operator (see Equation (7)) has a closed-form expression.
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We consider that both D and g are prescribed while we treat { ﬁ ! as hyper-parameters whose choice permits to tune
the representation mapping /. In order to learn both ¢ and { fl = 0 , we consider the following bilevel problem.

Problem 2.1 (Multilayered Bilevel Problem). Given a training data set {x;,v;}"_, where {x;,y;} € R? x IR¢ for every
i € [n] and a function g € Ty(R?), solve

Z(O) X;

; - M
minimize Zf L ),v;) where Vie€([n], for (ll_IO Lo L=l l) 3)
peB(R,RC) z " ):argminfl(z,zg )+ D(z,z; M)+ g(2)

{h) f“ole]-'(IRdled) zeR4

Problem-represents one of the main proposal of the paper. For different choices of { fl, D, g}, we will later show that
it is equivalent to training different forms of neural networks. More specifically, fl W111 relate to the linear layers
whereas {D, g} will be linked to the activation functions.

However, in its current form, Problem [2.1]is not amenable for optimization. Indeed, we need to specify parametric
expressions for both ¢ and { fl}lL:_(} Concerning the former we make the common assumption that ¢ denotes a linear

mapping, hence promoting representations so that { zZ; ;}/z} _, can be linearly separated. Concerning the latter, we
suggest to restrict to the following class of functions.

Definition 2.1 (Class of layer-wise functions F). We consider bi-linear functions { fl such that (Vz € RY, \/z ) e R )
fl(z,zi.l)) = zE )TAsz—bsz—cszi +9y, 4)
where A; € R4, b, e R?, ¢; € R? and §; € R. In addition we let

]-"(IRdeRd):{fllflisasin@)}. (5)

As we will see in the next sections, for such choice, each of the lower-level problems in (3] yields a closed form
expression. In addition, the bi-linearity of f; will be pivotal to stress connections with linear layers of neural networks.

3 Connection to Multilayer Networks

In this section, we explore more in depth the Problem [2.1] when D stands for the euclidean distance. For peculiar choice
of g, we show that it boils down to the training of feedforward neural networks.

3.1 Layer-wise update with quadratic distance

By hinging on bi-linear functions f; from Definition [2.1] n and quadratic distance D, then each of the L lower-level
minimization problems of Problem[2.1|reads
I+1 . I
zg ) _ argmin fl(z,zg )) —||z z ||2 2(2),
zeR4

= prox, ( 0 -Vifilz,z )),

=proxg((1d —Al)251)+bl), (6)

S ———
W,

where we have introduced the variable W; € R%*? and the proximity operator of g, defined as

1
(Vu e IRd) proxg(u) =argmin g(v) + §||u —v|% (7

velR9

Hence, each layer update yields a closed form expression taking the form a single forward-backward step [[Chen and
Rockafellar, |1997, (Combettes and Wajs, [2005[. Therefore, Problem can be equivalently rewritten as follows.
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dom ¢ Legendre function ¢ Activation function p = V(j)_l Inverse activation function p_l Vo
[-1,1] t>—V1-t2 ISRU: t > t/V1 + 2 ts /N1 -2

[0,1] t|—>tlogt+(1—t)10g(1—t) Sigmoid: tHﬁ t|—>10g(ﬁ)
[-1,1] > —% log(cos( 7t) Scaled atan: t > T arctan(t) t tan(%t)
[-A,A] log(A2 -2+ i arctanh(A%) Scaled tanh: t — Atanh(Bt) t + (1/B)arctanh(t/A)
[-1,1] t > V1-t2+ tarcsin(t) Sinusoidal: t — sin(t) t > arcsin(t)

R t — cosh(t) Asinh: t — arcsinh(t) t — sinh(f)
Reg | t+ (t/ﬁ)log(eﬁ —L) = (1/B?)Liy(ePt) | Softplus: t - (1/B)log(exp(Bt) +1) t > (1/p)log(exp(Bt) — 1)

Table 1: Connection between activation functions p and Legendre functions. We report how V¢! matches
popular smooth activation functions for specific choice of Legendre functions ¢. For the Softplus activation § > 0

and Li,(x) = Y 12, f—’; is the polylogarithm function. The larger f, the closer to the ReLu activation. For the scaled
hyperbolic tangent, A = 17159 and B = 0.6666.

Problem 3.1. Given some training data set {x;,y;};_, made of n samples, where {x;,y;} € R? x R® for every i € [#],

solve
(0)

Zi =X;
minimize ZZ L ),v;) where VYie[n], {Jforl=0,1,....L-1 . (8)
peB(RYRC) pry (I+1) _ My
(Wb} o) e(R> xR )L [ z;  =prox,(Wz;" +by)

As discussed in [Bibi et al.|[2019]], [Combettes and Pesquet| [2020]], we also argue that the compositional form in (8]
is evocative of feedforward neural networks made of L layers. In the next section, we further strengthen the existing
connections.

3.2 Connection with neural networks

Problem .1}yields similarities with the training of feedforward neural networks made of L layers. Here {Wl} ! and

{bl} represent the weights and biases of neural networks, respectrvely We h1gh11ght that the case where Wl is
symmetrrc [Hu et al.,[2019] corresponds to the scenario where A;, appearing in (6)), is symmetric as well. In addition,
as shown in [Combettes and Pesquet, 2020, the proximity operator prox, can match a variety of activation functions

depending on the choice of the function g. Below, we recall two of such examples.

Example 3.1 (ReLu). The rectified linear unit function p: ¢ € R — max(t,0) € IR can be expressed as the proximity

operator prox, of g =1[0,4o0[- Henceforth, prox, reduces to the projection onto the positive orthant.

Example 3.2 (Arctan). The arctangent activation function p: t € IR  (2/7) arctan(t) is the proximity operator of
—2Z]og(cos Zt)—t2/2, if|t| < 1;

cteR— .
8 {+c>o, otherwise.

Here, we go one step further than [Combettes and Pesquet, 2020] by additionally linking activation functions to strongly
convex Legendre functions (see Definition [A.I). This is the subject of Proposition [3.1]and Proposition 3.2}

Proposition 3.1. Given some 1-strongly convex Legendre function @, then for g(-) = ¢(-) — %H 1%
(Vt €intdom®), prox,(t) = VO (). )
Proposition 3.2 (Informal connection). Many activation functions p can be written as the inverse gradient of strongly

convex Legendre functions @, i.e., p = \ORS

We report in Table[T]some of the most common activation functions and their link to Legendre functions. To the best of
our knowledge, such connection with Legendre functions was not explicitly derived. In the next section, we will further
build upon this observation in order to devise a novel neural network architecture.

4 Bregman Multilayer Network

While in the previous section we have considered quadratic distance D, we now investigate a more general class involving
the use of Bregman distances. In addition, we show that, for some regularizer g, the lower-level of Problem [2.1]yields a
new type of neural network. An extension to varying number of neurons per layer is provided in Appendix (B
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4.1 Layer-wise update with Bregman distances

We begin by recalling the definition of Bregman distances [Bauschke et al.| [2018].

Definition 4.1 (Bregman distance). Given some Legendre function @ € FO(IRd), the Bregman distance associated to @
reads, (Yu € dom®,v € intdom ®),

Dg(u,v) =DP(u) —D(v) —(VDO(v), u —v). (10)

In particular, we recover the Euclidean distance for @ = 1 ||-|?, i.e.,D%”_”z(u,v) = Jllu—v|?

Equipped with this definition, each layer-wise update can be rewritten as

I+1 . I
zg * ):argmm fl(Z,ZE ))+Dq>(2r )+g( )
zelR4

= prox, (VCD l -Vifi(z 2 )

~ brox? V@(z(l) _A (I b 11

= prox, i 1% 0 (an
~——
2w,

which leads to one step of the forward-backward algorithm with Bregman distances [[Van Nguyen, 2017} Bolte et al.,
2018|. We recall that the Bregman proximity operator (in Van Nguyen sense) of g with respect to @ reads

proxfgp(v) =argmin g(u)+ D (u) —(u,v). (12)

ueRd
Once again, by using the same arguments as in Section 3] Problem [2.1|boils down to:

Problem 4.1. Given some training data set {x;,y;};_, made of n samples, where {x;,y;} € R? x R® for every i € [#],
and a strongly convex Legendre function ® on IR, solve

250) =X;
minimize Zz 2),9;) where Vie[n], {forl=0,1,..,L-1
PeB(RY,R) - I+1) I I
(Wi =) (R R . | 2" = prox®(vo() + Wizl + by)

Remark 4.1. It is worth stressing that Problem is particular instance of Problemobtained for @ = ||-||°. In that
case, since VCD(zgl)) = zgl) is a linear term, it is encapsulated into W, as shown in @ However, in general, VO is a

non-linear operation and should thus be treated apart.

In the next section, we show how the compositional form in Problem . 1] gives rise to a novel neural network architecture.

4.2 Proposed Bregman neural network

Similarly to the comparisons drawn in Section 3.2} we argue that the lower-level algorithm in Problem- 4.1|bears some

similarities to feedforward neural networks made of L layers. Indeed, we also identify {Wl} I and {bl}L ! to the

weights and biases, respectively. In the remaining of the section, we will show that, when prox?

operator, then VO is the inverse activation operator.

is an activation

We start by establishing that a large variety of activation operators can be put in the form of a proximity operator with
Bregman distances for specific choices of g and ®@. The starting point is the following counterpart of Propositionfor
Bregman proximity operators.

Proposition 4.1. Given some 1-strongly convex Legendre function @, then for g = 14om e being the indicator function
of dom®, we have that

(Vt €intdom®), proxg (t) = VO (¢). (13)

As a consequence, any invertible activation function p taking the form VO~ (see Proposition D can be equivalently
written as the proximity of g(-) = D(-) - %H -||I*> with respect to the Euclidean metric (see Proposition | or in the form
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of a Bregman projection with respect to the Legendre function @ (see Proposition 4.1)). In other words, many activation
functions can be recovered independently from the choice of the couple {D, g}, i.e.,

(Standard) ¢g=® - %H “||*and D = D%II-IIZ'
(Bregman) ¢ = 1gomq and D = Dg.

However, interpreting the activation function from the viewpoint of a Bregman distance has the particularity of having
the additional term V®(z())) appearing in Problem which was absent in Problem As a matter of fact, it follows
from Proposition that this terms is the inverse activation applied to the previous representation. Henceforth, the
compositional form in Problem4.T|can be rewritten in terms of the proposed Bregman feedforward layers.
Definition 4.2 (Bregman feedforward layer). Let p be some invertible activation function. Then, the Bregman
feedforward layer reads:

2+ = p(pfl (z(l)) + w20+ bz). (14)

Intuitively, the added term p_1 (z(l )) plays a similar role as the shortcut term present in ResNet [He et al.,[2016] since it
will connect one layer to all previous ones. Another particularity is that, whenever W; = 0 and b; = 0, then

20D = p(p_l(z(l)) + w2 + bl) = p(p_l(z(l)) =z (15)

In other words, the neuron is the identity. The reader is invited to refer to Appendix |C|for a complementary point
of view on (I3). Note that, when designing an activation, a special attention is usually given to the property that the
activation function should approximates the identity near the origin in order to reproduce (I3). Last but not least, (I4)
paves the way to an ordinary differential equation of the form

dp” (=()
dt

involving p~! in place of the identity present for residual networks [Chen et al., 2018].

= W(t)z(t) + b(t), (16)

S Numerical Experiments

In this section, we compare both standard multilayer perceptrons and residual networks against their proposed Bregman
variants. The purpose of these experiments is not to outperform the accuracy of top leading neural networks but to
assess, on simple architectures trained with vanilla optimizers, the added benefits.

5.1 Bregman Multi-layer Perceptron

Throughout this section, we compare the performance of standard multi-layer perceptrons (MLP) against the proposed
variant with Bregman layers.

Architectures compared. Given an activation operator p, we consider the standard layer update
2+ = p(le(l) + bl),
and the proposed Bregman layer update
2D = p(pfl(Mlz(l)) + Wiz 4 bl).

There, an additional linear operator M; to be learned has been added to handle the general case where the dimensions of
2 and z(+1) differ. When those dimensions match, we stick to M; = I, instead. Details and justifications are provided

in Appendix
5.1.1 Two-spiral Dataset

We begin by comparing the two MLPs on a 2 dimensional, yet challenging, binary classification task which proves to
be useful for illustrating the benefits of the proposed variant.

Setting. The two-spiral dataset is a widely used benchmark for binary classification [Chalup and Wiklendt, [2007]].
Here, we reproduce a similar dataset and form 103 data points on two intertwined spirals which cannot be linearly
separated. An illustration is reported in Figure|l} The purpose of the experiments is to train MLP so that the learned
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Training dataset Output of layer 1 Output of layer 2 Output of layer 3
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Figure 1: Two-spiral Dataset: Bregman MLP. We represent the inputs dataset as well as the representation learned at
each layer.
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Figure 2: Two-spiral Dataset: Standard MLP. We represent the inputs dataset as well as the representation learned at
each layer.

100-layers MLP networks | Test accuracy

Bregman MLP (deterministic) | 98.16 (+ 1.74)

Standard MLP (deterministic) | 74.62 (+ 1.51))

Bregman MLP (random) 96.36 (+ 4.85)

Standard MLP (random) 50.00 (+ 0.00)
Table 2: Two-spiral Results: 100-layers MLPs. Test accuracies are reported for two types of parameters’ initializations
(random and deterministic, see Definition .

representation of the two-spiral dataset can be linearly separated. To do so, we consider L € IN* layers with arctan
activations and 2 neurons per layer. MLPs are learned using a plain stochastic gradient descent (SGD) optimizer. The
batch-size, learning rate and number of epochs are set to 16, 1072 and 500, respectively.

Quality of the learned representation. We first trained simple 3-layers standard and Bregman MLP achieving training
accuracy of 93.50% and 99.99%, respectively. Note that, for the standard MLP, several rerun over multiple initialization
are required in order to achieve such accuracy. For illustration purposes, we report in Figure [1|and Figure [2| the outputs
of each layer for both MLPs. Interestingly, although the output at the third layer can almost be linearly separated in both
cases, they exhibit different behaviors. Indeed, the Bregman MLP tends to cluster the data points on the whole space
while the Standard MLP does it on a smaller manifold. Complementary results, reported in Appendix [D.1] additionally
support that the Bregman MLP leads to higher test accuracies irrespectively of the activation function.

We now consider the case where the number of hidden layers is large by setting L = 100. This setting is traditionally
known to be challenging for training feedforward neural networks [Glorot and Bengio, [2010]]. As such, many tricks and
strategies (e.g., initialization, preprocessing) have been devised to train deep models (see [Hasanpour et al.,|2016] and
references therein). Still, we stick to the vanilla optimization setting with a fixed learning rate (validated on a coarse grid
in 1074,...,107), a SGD optimizer with batch-size 16 and an early stopping strategy based on the validation accuracy.

Impact of the initialization. Following the common observation that MLPs trained with SGD from random initialization
are performing poorly [Glorot and Bengio| 2010], we compare the performance of both Standard and Bregman deep
MLP trained with two initialization strategies. To this regard, we consider the usual random initialization as well as
a deterministic initialization detailed in the appendix (see Definition [D.T). Averaged test accuracies over multiple
seeds, displayed in Table 2] confirms that the standard MLP performs badly (i.e., up to 74.64% accuracy for a specific
initialization). On the contrary, the Bregman MLP managed to achieve up to 98.16% test accuracy while being less
sensitive to the initialization.

Layer-wise behavior. Here, we stick to the deterministic initialization. Once the 100-layers MLP models are trained,
we compute a posteriori the norm of the parameters (weights and biases) obtained at each layer. Average results over
multiple seeds are reported in Figure [3] (left plot). We observe that both methods exhibit very different layer-wise
behaviors. On the one hand, the norm of the standard MLP parameters slowly grows with the number of layers while
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—— Bregman
1072 Standard
—— Bregman 1073
Standard

\

0 25 50 75 100 0 25 50 75 100
Layers Layers

Figure 3: Two-spiral Results: layer-wise behavior of 100-layers MLP. Left: norm of the parameters (weights and
biases) of each layer. Right: average norm difference of the output of consecutive layers.
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Figure 4: MNIST Dataset: learned 2D representation. We report in the left plot (resp. right plot) the learned
representation through a Bregman MLP (resp. standard MLP) achieving a train accuracy of 100% (resp. 99.70%) and
test accuracy of 94.74% (resp. 94.40%). Each color stands for a different label.

the proposed Bregman variant shows different order of magnitude between the parameters of the first and last layers.
This suggests that the last layers play a minor role and could potentially be removed with a negligible impact on the
performance. We now turn to the norm difference between two layers representation Figure 3] (right plot) which permits
to gain some insight about the stability of the inner dynamical system (T)). Results indicates that the standard MLP is
more prone to instabilities as suggested by the increasing behavior from layers 50 to 100. On the contrary, the Bregman
MLP exhibits a decreasing trend which is a sign of a more stable dynamic.

5.1.2 MNIST dataset

We now turn to the popular MNIST dataset which is known to be easily classifiable by resorting to simple MLPs.

Setting. We conduct experiments similar to the setting of [Ciresan et al.,[2010]. The latter is known to achieve under
1% test accuracies with simple MLP architectures. All details are reported in the appendix (see Section [E. I).

Quality of the learned representation. In this first experiment, we investigate the ability of MLPs to learn a meaningful
2 dimensional representation of the MNIST dataset. To this end, we consider sigmoid based MLPs made of 3 hidden
layers of size 784, 2 and 2, respectively. The output layer is a linear layer used to map each 2 dimensional point to one
of the 10 labels. The learned representation is reported in Figure[d] We observe that the Bregman MLP (left plot) yields
a more compact clustering of the data points of the same label, hence confirming the same observation drawn on the
two-spiral dataset.

Impact of depth and activation functions. A major challenge when training neural networks is to avoid the vanishing
gradient phenomenon which can be caused by activation functions having small ranges of gradient values and the depth
of the networks [Hochreiter et al.| [2001]]. Here, we reproduce multiple settings encompassing such scenario. To do so,
we consider MLPs with either sigmoid or scaled hyperbolic tangent activation. The former is known to prone very small
gradient values during back-propagation while the latter has received great success instead. We additionally consider
various number of hidden layers (2, 9) and various number of neurons per layer (16, 128, 1024). Performances are
reported in Figure[5] We observe that both Standard and Bregman MLP perform equally well with L = 2 layers (left
plots) with either sigmoid (top left) or scaled hyperbolic tangent (bottom left) activation function. Instead, for a larger
number of layers (right plots), the Standard MLP performs poorly with sigmoid activations (bottom right) as opposed to
the Bregman variant. We believe that the well behavior of Bregman MLPs is due to the presence of the p‘1 term which,
similarly to the skip connection of residual networks (ResNets), allows to mitigate vanishing gradient issues.

5.2 Bregman Residual Neural Network

Following the discussion done in Section[4.2] the proposed Bregman layer exhibits some similarities with ResNet since
the skip connection is reminiscent of our added p~! term. By hinging on the resemblances, we introduce and compare
the following BregmanResNet.
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Figure 5: MNIST Results: impact of the architecture. We consider MLPs with scaled hyperbolic tangent activation
function (top) or sigmoid activation function (bottom). For both, we report the test accuracies of both standard and
Bregman MLP with L = 2 (left) or L = 9 (right) layers, and several numbers of neurons per layer (i.e., 16, 128 or 1024).
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Test accuracy | {,-Robust accuracy | £,-Robust accuracy

BregmanResNet20 (atan)

89.11 (£ 0.20)

33.86 (+ 0.68)

50.56 (+ 0.52)

BregmanResNet20 (tanh) 89.28 (+ 0.28) 35.29 (+ 1.51) 51.68 (+ 1.42)
BregmanResNet20 (sigmoid) 89.75 (+ 0.23) 33.26 (= 1.47) 50.40 (+ 1.46)
BregmanResNet20 (softplus) 90.82 (+ 0.12) 42.46 (+ 1.25) 53.13 (+ 1.68)
ResNet20 90.80 (+ 0.18) 40.84 (+ 0.71) 51.65 (+ 1.32)
BregmanResNet110 (softplus) | 91.52 (+ 0.89) 48.24 (+ 1.51) 58.09 (+ 1.92)
ResNet110 90.39 (+ 1.07) 47.78 (+ 1.66) 56.29 (+ 1.76)

Table 3: CIFAR-10 Results. We compare the performance of ResNet20 and ResNetl10 as well as its proposed
Bregman variant trained on CIFAR-10. Test accuracies are averaged over 10 random initializations.

Architectures compared. Our proposed variant differs from classical ResNet solely by the architecture of the residual
blocks used. To this purpose, we recall below its standard form where the convolutional layers usually also encapsulate
batch normalizing layers.

z < ReLu (z + ConVZ[ReLu(ConVI [z])]) (17
Our proposed variant is defined for any invertible activation function p as follows
Z p(p_l(z) +Conv2[p(Conv1[z])]). (18)

There, the residual term is replaced by p‘l (z) while p is used in placed of the ReLu activation function.

5.2.1 CIFAR-10 dataset

We now conduct experiments on the CIFAR-10 dataset which consists of 50k training images and 10k testing images in
10 classes |[Krizhevsky and Hinton| [2009].

Setting. We follow the original training data augmentation: 4 pixels are padded on each side, a 32x32 crop is randomly
sampled from the padded image or its horizontal flip, and the pixels intensity are rescaled. Our implementation is
based on a rework of [[delbayev| [2018]]. Concerning the optimization, we use the same setting as in the original ResNet
paper [He et al.L 2016], namely a learning rate of 10~!, weight decay of 10~#, momentum of 0.9. In addition, the

optimization is done over 182 epochs with a decreasing of the learning by a factor 10 at the 91" and 136" epochs.

Test accuracy. We report in Table [3] the test accuracies of ResNet20 as well as its Bregman variants obtained for
various choices of activation functions. Interestingly, solely the variant with the SoftPlus activation, which is a smooth
approximation of ReLu, managed to match the performance of the standard ResNet20. In addition, we compare the
performance of a deeper residual network, namely the ResNet110. Note that we did not resort to the optimization
heuristic from but stick to the same setting, instead. Test accuracies are reported in Table [3]and show a
significant improvement over the baseline. We believe this is due to the better training behavior of the proposed variant
when dealing with deep layers.
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| Test accuracy

ResNet18 65.10 (+ 0.36)
BregmanResNet18 65.25 (+ 0.13)
ResNet110 71.45 (+ 0.04)

BregmanResNet110 | 72.28 (+ 0.12)
Table 4: CIFAR-100 Results. Test accuracies are averaged on 10 random initializations. The Bregman variant is
devised with the softplus activation function.

Adversarial robustness. We additionally compare the robustness of both ResNet models against adversarial attacks.
Adversarial attacks are quasi imperceptible perturbations, which added to the original image, manage to fool the
prediction of the model. To this regard, we consider both £ -attacks and ¢,-attacks. Concerning the former, we resort to
the popular fast gradient sign method [Goodfellow et al.,[2015]] with a maximal perturbation of ¢ = 8/255. Concerning
the latter, we make use of the PGD attack of [Madry et al., 2018] with a maximum ¢,-perturbation of ¢ = 0.5. For both
architectures, we see that the proposed variant is more robust than its standard counterpart. More interestingly, altough
the test accuracies on ResNet20 are comparable, the Bregman variant shows a significant improvement in terms of
robust test accuracies.

5.2.2 CIFAR-100 dataset

We turn to the more challenging CIFAR-100 dataset made of 500 training images and 100 testing images per each of
the 100 classes |[Krizhevsky and Hinton|[2009].

Setting. We follow the same pre-processing used for the CIFAR-10 dataset and reproduce the experimental procedure
of [Zhang et al.,[2019]. Namely, we train the model during 200 epochs with batches of 128 images and decay the
learning rate by a factor of 5 at the 60th, 120th, and 160th epochs. We also resort to a SGD optimizer with initial
learning of 0.05, momentum of 0.9 and weight decay of 1073,

Performance. We report in Table 4] the averaged test accuracies. Once again, we observe a minor improvement over
the baseline. More interestingly, putting these results into perspective with the corresponding train accuracies (being
respectively 99.94% and 99.92% for BregmanResNet110 and ResNet100) suggests that the proposed variant benefits
from slightly better generalization properties.

6 Conclusion

The present paper framed the learning of a representation mapping as a multi-layered bilevel optimization. We have
shown that for some quadratic distances, the learning framework boils down to the training of a feedforward neural
network. In addition, by elaborating on more general distances, we proposed the Bregman layer which includes an
additional term defined as the inverse of the activation function. Intuitively, this term plays a similar role as the skip
connections introduced in the ResNet [He et al., 2016] by linking one layer to the previous ones. In addition, it ensures
that whenever the weights and biases are zero the layer reduces to the identity. We have shown experimentally that two
interesting aspects follow from this property. First, the training of deep architectures is eased. Second, after some depth
all layers parameters are almost zero and thus subsequent layers could potentially be removed without hampering the
prediction performance. We believe, this may reduce the memory needed to store very deep architectures. Future works
should further study both aspects in very deep architectures and investigate how the presence of the inverse activation
mitigates vanishing gradients issues. In addition, following up on the connection (I6) with neural ordinary equations,
an extension of Bregman neural networks to continuous-depth and continuous-time latent variable is under study.
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A Legendre Functions

We recall below the definition of a Legendre function [Bauschke et al., |1997].
Definition A.1 (Legendre Function). Let X’ be a Hilbert space and @ € Ij(X'). Then @ is called

* essentially smooth if @ is differentiable on intdom® = () and ||[V®(v)|| — +oo as v + boundarydom @,
* essentially strictly convex if @ is strictly convex on every convex subset of dom 0@,

* Legendre if @ is both essentially smooth and essentially strictly convex.

B Extension to Varying Number of Neurons

So far, we have assumed that the number of neurons is identical throughout the layers. In the following, we remove such
hypothesis and denote by d; the number of neurons at layer /. In addition, we consider that both D¢, and g, hereafter
denoted Dy, and g, can also vary at each layer.

In order to extend the proposed framework to the scenario where two consecutive layers’ representations have different
dimensions, we consider the following inner dynamical system:

0 _ ..
z; =X
for/=0,1,...L -1 19
(I+1) . (1) (1) (19)
z; ' =argmin fi(z,M;z; ") + Do, (2, M;z; ') + §1(2),

ze]Rdl-H

where f; € F(IR%+1 x R+1), g€ I (R%+1) and M; € R%4+1%% is additional term permitting to match the dimensions of
(1 (1+1)

z; and z;

The main difference with respect to the dynamical system in (3)) is the presence of the matrices {M; }le_Ol. The latter are

not prescribed but have to be learned in the same way as parameters of the functions { }zL;(}-

In order to shed some light on the space of admissible matrices M;, we first recall from the definition of Bregman

. . N . . .
distances (see Definition , that one needs to ensure that Mlzi- ) € intdom®;. To to do, we devise a sufficient
condition in the next proposition.

Proposition B.1. Suppose that each Legendre function @; are built from an elementary Legendre function ¢; such that

I+1
Qi ue R%+1 Zq{)l(u]-), with dom¢; =1,
j=1

where T denotes a convex interval. Then v\!) € dom ®;_ implies that Mjv!) € dom ®; for any M, € Aé” where

da
A§+1 =JMe [0’ l]dl+1><dl | (Vl c [dl+1])’ ZMZ!J =1
j=1

Proof. Let ul) = Mlv(l). Then, for every i € [d}, ], the i-th component of u can be seen as a convex combination of
v e, (uD); = Z;j’zl Milj(u(l))j. Therefore, since each (v(l))j € I, with T convex, then so does (u!);. O

The assumption in is actually pretty standard. In the context of Bregman neural networks, it translates into the
hypothesis that all the activation functions present in the network have the same range.

(

Remark B.1. By elaborating on Proposition one can recursively ensure that for every | € {1,...,L}, zil) € dom®;_4

(0)

on the condition that so does the input data points z;

rescaling the input data.

= x;. This can always be enforced in practice by shifting and

We are now left with deriving the closed-form solutions of (19), i.e.,

13
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Figure 6: Comparison of layer-wise objectives (2) for f; = 0. On the one hand, in Euclidean case, the objective reads

zt> (D(z) - %llzll )+ 5 Lz - z ||2 On the other hand, for Bregman distances it solely reads z > Dg (2, zgl)).

I+1 . l
ZE * ):argmm fl(z,Mlzi- ))+Dq3[(2 ]VIIZ )+gl( z)

zeR91+1

= prox? (V(DZ(MZZ Y, fi(z M2 >))

= proxg (V@(Mlz( ) =AM Zgl)+bl) (20)
—_——
2w,

where we have introduced the variable W; € R%+1*%_ We finally end up with the following multilayered bilevel
problem.

Problem B.1. Given some training data set {x;,y;};_, made of n samples, where {x;,y;} € R? x IR° for every i € [n],

and 1-strongly convex Legendre functions {(D}IL:_OI, solve

o L )
minimize £ where Vi€ [n],
I’DEB(IRd,]RC) Z yl

{WI bl}L 1 (IRdXdX]Rd)
M1 e><,L y A

ZEO) =X

for/=0,1,...,L-1
[ A - prox?’(V(DZ(Mlzgl)) + lef.l) +by)

1

Compared to Problem [4.1] Problem [B.1]has the drawback of requiring to learn the extra matrices {M;}. In practice, we
do learn them in the same way we learn the weights {W;}. The only difference is that we further need to project them
into AT,

1

C Interpretation in terms of layer-wise objective

As previously discussed in Section large variety of activations V®~! can be equivalently written as the proximity

of g=0 - L1117 (see Proposition [3.1)) or as a Bregman projection with respect to the Legendre function @ (see
Proposition

From the point of view of (I, each case results in minimizing different layer-wise functions £;(-, z (l) ) recalled below

(1)

» (Standard) z > fi(z,2\") + D (z) - 1|12 + LIz - 212,

* (Bregman) z — f/(z, zf- )) + Dy (2, zf-l)).

For illustration purposes, we report in Figure @ the two objectives in the particular case where f; = 0 for qf): t -
—1t/2log(cos(mt/2)). For both, the behavior near —1 and 1 confine the solution to lie within the bounds [1,1]. In

addition, we observe that, for the Bregman variant, the minimizer coincide with zg ) when f; = 0, thus bringing another
view on the observation (15).

14
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[ Ir=0.01 [ Ir=0.1 [ Ir=1 |
Bregman (sigmoid) | 91.60 (£ 6.70) | 99.44 (+ 0.38) | 94.32 (+ 7.07)
Bregman (atan) 98.74 (£ 0.36) | 96.00 (+6.99) | 98.06 (+2.27)
Bregman (tanh) 96.18 (£ 0.88) | 99.18 (+0.64) | 83.06 (+9.52)
Standard (sigmoid) | 64.36 (+ 13.64) | 77.38 (+5.57) | 79.84 (+ 3.33)
Standard (atan) 84.04 (+ 11.16) | 86.20 (£ 9.15) | 77.74 (+ 4.25)
Standard (tanh) 78.60 (£ 9.23) | 75.00 (+5.55) | 73.00 (+ 1.15)

Table 5: Additional Two-spiral Results: 3-layers MLP. We report the test mean accuracies (over S realizations)
obtained for various learning rate (Ir).

| Ikr=0.001 | Ir=0.01 | Ir=0.1 |
Bregman (non-informative) | 93.24 (+9.48) 98.16 (£ 1.74) | 94.98 (= 3.64)
Standard (non-informative) | 74.68 (+ 1.64) | 74.62 (= 1.51) | 68.02 (x7.13)
Bregman (random) 72.98 (+ 15.21) | 96.36 (=4.85) | 93.08 (+4.75)
Standard (random) 50.00 (= 0.00) | 50.00 (= 0.00) | 50.00 (+ 0.00)
Table 6: Additional Two-spiral Results: 100-layers MLP. Results are reported for two types of parameters’ initializa-
tions (random and non-informative, see Definition and for three learning rates (Ir).

D Additional Results on Two-Spiral Dataset

In this section, we provide additional results complementing the experiments done in Section[5.1.1]

D.1 3-layers MLPs
In order to complement the experiments done in Section[5.1.T} we report in Table [5|additional results for 3 layers based

MLPs made of 2 neurons per layer. Test accuracies are averaged over 5 independent realizations and are reported for
various activation functions and learning rates.

Irrespectively of the activation function and the learning rate, we observe that the proposed variant yields higher test
accuracies.

D.2 100-layers MLPs

In order to train a deep MLPs, we suggest to resort to the following non-informative initialization.

Definition D.1 (Non-informative initialization). Given some layer with d € IN input and output dimensions, we let
* (Bregman) W; = 0,44 and b; = 0y,
* (Standard) W) =1, and b; = 0,.

This change of treatment between standard and Bregman MLPs can be understood through the prism of Remark {.1]
Indeed, we recall that, for any Legendre function @, each layer update can be written as

1 1
20+ = prox? (ch(zf. N+ Wz )+bl). Q1)
In particular, for ® = %Il -|12, we recover
) 1
2D = Pprox, (zf n leg n bl). (22)

Henceforth, by 1) applying a change of variable W; <— W, +1; and ii) identifying prox o with some activation operation,
we recover the standard MLP layer Section[3.1] i.e.,

20+ = p(wlzﬁ” + bl). (23)

Therefore, having W; = 0 for Bregman MLP translates to W; = I; for Standard MLP due to the change of variable.

In order to complement the discussion done Section[5.1.1} we provide additional results in Table [6] for various learning
rates and for different initializations.
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Figure 7: Additional MNIST Results: impact of architecture. We report additional results for sigmoid-based MLPs
with varying number (1, 2, 4, 8), represented from top left to bottom right, and several number of neurons per layer (i.e.,
2,4, 8,16 and 32). As the number of layers grows the performance of Bregman MLP remains constant while those of
its standard counterpart drop significantly.

E Additional Results on MNIST Dataset

In this section, we detail the experimental setting of Section[5.1.2]and provide additional experiments further illustrating
the vanishing gradient problem.

E.1 Experimental setting of Section[5.1.2]

We report below how we have tried to reproduce the same experimental setting as in [Ciresan et al., 2010]] with the
available information.

Data preprocessing. The 50k samples of the training set undergo random affine transformations keeping the center
invariant. To this effect, we use random rotations between (—11.25,+11.25) degrees and a random scaling selected in
(—0.825,+0.825). Then, each 32 x 32 pixels images are flatten into 784 dimensional vectors pre-processed so that the
pixel intensity lie within the activation range. The original un-deformed training dataset is then use as validation set to
perform early stopping. Both validation and test sets are flatten and rescaled in the activation range.

Note that, as opposed to[Ciresan et al.|[2010], we do not perform data augmentation with elastic deformations.

Optimizer. All MLPs are trained using a stochastic gradient descent with batch size 100 with a decreasing step learning
linearly decreasing of a factor 1073 over 103 epochs. The initial learning rate is cross-validated over {1073,1072,107!}.
For sigmoid-based MLP (resp. scaled hyperbolic tangent), we have found the best value to be 107! (resp. 1073).

E.2 Additional experiments on sigmoid-based MLPs

In order to further highlight the vanishing gradient effect occuring with sigmoid-based MLPs, we investigate the impact
of various architectures on the performance.

More specifically, we compare the test accuracies achieved by both standard and Bregman MLPs with sigmoid activation
function and several hidden layers sizes and 1 to 8 hidden layers. This experiment is repeated over 5 different data
splits. Average test accuracies are reported in Figure[7} For a single hidden layer (top left figure) we observe that both
standard and Bregman MLP perform equally well. However, as the number of hidden layers grows (from top left to
bottom right), the performances of standard MLP drastically drop while those of Bregman MLP remain constant.

F Additional Results on CIFAR-100 Dataset

In order to complement the CIFAR-100 experiments conducted in Section[5.2.2] we additionally report in Figure [8]the
averaged training loss for ResNet18, ResNet110 and their respective Bregman variant. Both standard and Bregman
ResNets exhibit the same learning behaviour with a slightly lower training error for the Bregman versions.
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Figure 8: Additional CIFAR-100 Results: Training behavior. Left: ResNet18-based models. Right: ResNet110-based

models.
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