Bilevel Optimization of Hyperparameters: Application to Structure Discovery

Jordan Frecon

Apprentissage, LITIS, INSA Rouen

Olitis

slides & more available at jordan-frecon.com

Example 1: Structured linear regression

Setting presented in

[Frecon et al. "Bilevel learning of the group Lasso structure". NeurIPS (2018)]

Goal: Predict the function of proteins from regulatory patterns

Collaboration with Giorgio Valentini (Universita degli Studi di Milano)

Gene = long sequence with regulatory patterns (dictate gene expression)

Proteins perform various functions (transport, redox, binding ...)

Regulatory patterns

R_1	R_2	R_3	 R_P
CTGAC	GGATC	GCAAG	 ATCAG

Gene 1 1 1 0 ... 0

Protein sub-functions (Gene Ontology)

Go_1	Go_2	Go_3	 Go_T
transport	redox	binding	
1	0	0	 1

Sequences R_1 and R_2 are present in Gene 1 Gene 1 produces neurons Neurons perform transport of electrons

Regulatory patterns

 R_2 R_3 ... R_{P} GGATC GCAAG

Gene 1	1	1	0	 0
Gene 2	1	1	1	 0

Protein sub-functions (Gene Ontology)

ao_1	uv_2	ao_3	•••	uv_T
transport	redox	binding		
1	0	0		1
1	1	0		0

Sequences R_1 , R_2 and R_3 are present in Gene 2

Gene 2 produces hormones

Hormones perform transport of particles and reduction-oxidation

Regulatory patterns

R_1	R_2	R_3	 R_P
CTGAC	GGATC	GCAAG	 ATCAG

0

0

1

Gene 1 1 1 0 Gene 2 1 1 1 Gene 3 0 0 0

hormone antibody

neuron

Protein sub-functions (Gene Ontology)

Go_1	Go_2	Go_3	 Go_T	
transport	redox	binding		
1	0	0	 1	
1	1	0	 0	
0	0	1	 0	

Sequence R_P is present in Gene 3 Gene 3 produces antibodies Antibodies perform binding of particles

Regulatory patterns

R_1	R_2	R_3	 R_P
CTGAC	GGATC	GCAAG	 ATCAG

 Gene 1
 1
 1
 0
 ...
 0

 Gene 2
 1
 1
 1
 ...
 0

 Gene 3
 0
 0
 0
 ...
 1

$$X \in \{0,1\}^{N \times P}$$

Protein sub-functions (Gene Ontology)

Go_1 transport	Go_2	Go_3	 Go_T
1	0	0	 1
1	1	0	 0
0	0	1	 0
:	:		:

1

0

0

$$y = [y_1 \cdots y_T] \in \{0,1\}^{N \times T}$$

1

Jordan Frécon 4 / 36

neuron =

antibody

Regulatory patterns

R_1	R_2	R_3	 R_P
CTGAC	GGATC	GCAAG	 ATCAG

 Gene 1
 1
 1
 0
 ...
 0

 Gene 2
 1
 1
 1
 ...
 0

 Gene 3
 0
 0
 0
 ...
 1

: : : : : : : Gene N 1 1 0 ... 1

 $X \in \{0,1\}^{N \times P}$

Protein sub-functions (Gene Ontology)

Go_1	Go_2	Go_3		Go_T	
transport	redox	binding			
1	0	0		1	
1	1	0		0	
0	0	1		0	
:	:	:	·	:	

$$y = [y_1 \cdots y_T] \in \{0,1\}^{N \times T}$$

Goal 1: Predict each y_t from X

Jordan Frécon 4 / 36

neuron

hormone =

antibody =

$$y = [y_1 \cdots y_T] \in \mathbb{R}^{N \times T}$$

Goal 1: Predict each y_t from X

 $X \in \mathbb{R}^{N \times P}$

 \rightarrow to generalize: X and y are not only made of 0's and 1's

Goal 1: Predict y from X

- \rightarrow to generalize: X and y are not only made of 0's and 1's
- \rightarrow to simplify: we first assume that T=1 and omit the index t

Goal 1: Predict y from X

- \rightarrow to generalize: X and y are not only made of 0's and 1's
- ightarrow to simplify: we first assume that T=1 and omit the index t

Goal 2: Discover if there exist some groups in X

ex: R_1 and R_2 are both equally relevant to predict v

Assumptions

Model the observations

 \implies linear model + Gaussian distribution: there exists w such that $y \sim \mathcal{N}(Xw, \sigma)$

Model the group structure

few groups of features in X are relevant to predict y

 \implies group sparsity: some groups of variables in w are zero while others are non-zero

Goal 1: Predict y from X Group Lasso [Yuan and Lin (2006)]

$$\hat{w}(\mathcal{G}_{1}, \dots, \mathcal{G}_{L}) = \underset{w \in \mathbb{R}^{P}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{2} \|y - Xw\|^{2}}_{\propto -\log p(y|Xw)} + \lambda \underbrace{\sum_{l=1}^{L} \|w_{\mathcal{G}_{l}}\|_{2}}_{\text{enforces structure}}$$

L partitions $\mathcal{G}_1, \ldots, \mathcal{G}_L$ of P features

$$\mathcal{G}_{I} \subseteq \{1, \dots, P\}
\mathcal{G}_{I} \cap \mathcal{G}_{I'} = \emptyset \text{ if } I \neq I'
\cup_{I=1}^{L} \mathcal{G}_{I} = \{1, \dots, P\}$$

Goal 1: Predict y from X Group Lasso [Yuan and Lin (2006)]

$$\hat{w}(\mathcal{G}_1, \dots, \mathcal{G}_L) = \underset{w \in \mathbb{R}^P}{\operatorname{argmin}} \quad \underbrace{\frac{1}{2} \|y - Xw\|^2}_{\propto -\log p(y|Xw)} + \underbrace{\lambda \sum_{l=1}^{L} \|w_{\mathcal{G}_l}\|_2}_{\text{enforces structure}}$$

Mask
$$heta_{\it I} = \{0,1\}^{\it P}$$
 of the $\it I$ -th group

element-wise multiplication $\theta_l \odot w = [\theta_{l,1} w_1, \theta_{l,2} w_2, \dots, \theta_{l,P} w_P]^{\top}$

Goal 1: Predict y from X Group Lasso [Yuan and Lin (2006)]

$$\hat{w}(\mathcal{G}_{1}, \dots, \mathcal{G}_{L}) = \underset{w \in \mathbb{R}^{P}}{\operatorname{argmin}} \quad \underbrace{\frac{1}{2} \|y - Xw\|^{2}}_{\propto -\log p(y|Xw)} + \underbrace{\lambda \sum_{l=1}^{L} \|w_{\mathcal{G}_{l}}\|_{2}}_{\text{enforces structure}}$$

Goal 2: Discover the structure of X

 \implies finding $\{\mathcal{G}_1,\ldots,\mathcal{G}_L\} \iff$ learning the hyperparameter $\theta = [\theta_1\cdots\theta_L] \in \{0,1\}^{P\times L}$

Reminder

Goal 1: Predict y from X

- \rightarrow to generalize: X and y are not only made of 0's and 1's
- ightarrow to simplify: we first assume that T=1 and omit the index t

Reminder

Regulatory patterns

$$X \in \mathbb{R}^{N \times P}$$

Protein sub-functions (Gene Ontology)

Go_1 transport	Go_2	${\it Go}_3$		Go_T
:	:	:	:	:

$$y = [y_1 \cdots y_T] \in \mathbb{R}^{N \times T}$$

Goal 1: Predict y from X

Now we consider all T tasks

neuron

🗫 antibody 〓

hormone =

$$y \in \mathbb{R}^{N} \longrightarrow y \in \mathbb{R}^{N \times T}$$
$$w \in \mathbb{R}^{P} \longrightarrow w \in \mathbb{R}^{P \times T}$$

Jordan Frécon

7 / 36

Multi-task setting: T tasks sharing the same group structure

$$(\forall t \in \{1,\ldots,T\}) \quad \hat{w}_t(\theta) \in \operatorname*{argmin}_{w_t \in \mathbb{R}^P} \frac{1}{2} \|y_t - Xw_t\|^2 + \lambda \sum_{l=1}^L \|\frac{\theta_l}{0} \odot w_t\|_2,$$

Some groups are relevant (non-zero) for some tasks and irrelevant (zero) for others

Example 2: Multi-task classification

Setting presented in

[Frecon et al. "Unveiling groups of related tasks in multi-task learning". ICPR (2020)]

Motivation: animal recognition

 $X \in \mathbb{R}^{N \times P}$ made of N vectorized image of P pixels $y \in \mathbb{R}^{N \times T}$ such that $y_{i,t} = 1$ if X_i belongs to the t-th animal class, 0 otherwise.

Issue: some classes of animals with very few samples (e.g., dalmatians & chimpanzees)

Motivation: animal recognition

Naive idea: T binary classification tasks of one type of animal vs. all

logistic model: $(\forall t \in \{1, \dots, T\})$, $\exists w_t \in \mathbb{R}^P \mid y_t \sim \mathrm{Bernouilli}(p_t)$ with $p_t = \frac{1}{1 + \exp(-Xw_t)}$

estimate $w_1, \ldots, w_T \Rightarrow T$ independent binary logistic regressions

Motivation: animal recognition

Proposed idea: learn classifiers of similar animals jointly

logistic model: $(\forall t \in \{1, \dots, T\})$, $\exists w_t \in \mathbb{R}^P \mid y_t \sim \mathrm{Bernouilli}(p_t)$ with $p_t = \frac{1}{1 + \exp(-Xw_t)}$ estimate $w = [w_1 \cdots w_T] \Rightarrow \mathsf{Multi-task}$ binary logistic regression

How to transfer learning between similar tasks

Model the observations

$$(\forall t \in \{1, \dots, T\}), \ \exists w_t \in \mathbb{R}^P \mid y_t \sim \mathrm{Bernouilli}(p_t) \ \mathrm{with} \ p_t = 1/(1 + \exp(-Xw_t))$$

Model task-relatedness

dalmatian (white + black spots) \approx deer (brown + white spots) \implies find $w_{\text{dalmatian}} \propto w_{\text{deer}}$ or more generally $[w_{\text{dalmatian}} w_{\text{deer}}]$ low-rank

Group 2: primates

Jordan Frécon 11 / 36

Multi-task logistic regression: [Pong et al. (2010)] \rightarrow here extended to L groups

$$\hat{w}(\mathcal{G}_1, \dots, \mathcal{G}_L) = \underset{w = [w_1 \cdots w_T]}{\operatorname{argmin}} \sum_{t=1}^T \underbrace{\log(1 - y_t \cdot Xw_t)}_{\propto -\log p(y_t \mid Xw_t)} + \underbrace{\lambda \sum_{l=1}^L \|w_{\mathcal{G}_l}\|_{\operatorname{tr}}}_{\text{enforces structure}}$$

Trace norm $\|\cdot\|_{\mathrm{tr}} = \mathsf{sum}$ of singular values \Rightarrow enforces low-rank

L partitions $\mathcal{G}_1, \ldots, \mathcal{G}_L$ of T tasks

$$\mathcal{G}_{I} \subseteq \{1, \dots, T\}
\mathcal{G}_{I} \cap \mathcal{G}_{I'} = \emptyset \text{ if } I \neq I'
\cup_{l=1}^{L} \mathcal{G}_{l} = \{1, \dots, T\}$$

Multi-task logistic regression: [Pong et al. (2010)] \rightarrow here extended to L groups

$$\hat{w}(\mathcal{G}_{1}, \dots, \mathcal{G}_{L}) = \underset{w = [w_{1} \cdots w_{T}]}{\operatorname{argmin}} \sum_{t=1}^{T} \underbrace{\log(1 - y_{t} \cdot Xw_{t})}_{\propto -\log p(y_{t}|Xw_{t})} + \underbrace{\lambda \sum_{l=1}^{L} \|w_{\mathcal{G}_{l}}\|_{\operatorname{tr}}}_{\text{enforces structure}}$$

Trace norm $\|\cdot\|_{\mathrm{tr}}=$ sum of singular values \Rightarrow enforces low-rank

Mask $\theta_I = \{0,1\}^T$ of the *I*-th group

tasks-wise multiplication
$$\theta_l \odot w = [\theta_{l,1} w_1, \theta_{l,2} w_2, \dots, \theta_{l,T} w_T]^{\top}$$

Multi-task logistic regression: [Pong et al. (2010)] \rightarrow here extended to L groups

$$\hat{w}(\mathcal{G}_1, \dots, \mathcal{G}_L) = \underset{w = [w_1 \cdots w_T]}{\operatorname{argmin}} \sum_{t=1}^T \underbrace{\log(1 - y_t \cdot Xw_t)}_{\propto -\log p(y_t \mid Xw_t)} + \underbrace{\lambda \sum_{l=1}^L \|w_{\mathcal{G}_l}\|_{\operatorname{tr}}}_{\text{enforces structure}}$$

Trace norm $\|\cdot\|_{\mathrm{tr}} = \mathsf{sum}$ of singular values \Rightarrow enforces low-rank

When the optimal groups are unknown

 \implies find $\{\mathcal{G}_1,\ldots,\mathcal{G}_L\} \iff$ learn the hyperparameter $\theta = [\theta_1\cdots\theta_L] \in \{0,1\}^{T\times L}$

Disclaimer

These are **motivating** examples to introduce the optimization problems In practice, it is more complex ...

See the work of practitioners:

- Gene expressions [Higuera et al., (2015)]
- Animals images [Lambert et al. (2009)]
- Brain signals [Sabbagh et al. (2019)]

Proposed Framework

Groupwise regularized optimization problem

In both examples, the prediction phase requires to solve

$$\hat{w}(\theta_1, \dots, \theta_L) = \underset{w}{\operatorname{argmin}} \left\{ \mathcal{L}(w; \theta) \triangleq \underbrace{\ell(y, \langle X, w \rangle)}_{\substack{\text{enforces model} \\ \infty - \log p(y|Xw)}} + \underbrace{\sum_{l=1}^{L} \rho_l(\theta_l \odot w)}_{\substack{\text{enforces structure}}} \right\}$$

The structure is:

- encapsulated into $\theta = [\theta_1 \cdots \theta_L]$
- ullet applied by the bilinear mapping \odot
- enforced by the **norms** ρ_I

Given the parameter matrix $w \in \mathbb{R}^{P \times T}$ made of P features and T tasks

- Grouping features (1st example) $\theta_l \in \{0,1\}^P$ and $\sum_{l=1}^L \theta_l = \mathbb{1}_P$
- Grouping tasks (2nd example) $\theta_{\it l} \in \{0,1\}^{\it T}$ and $\sum_{\it l=1}^{\it L} \theta_{\it l} = \mathbb{1}_{\it T}$

Learning the group structure θ

In many scenarios, the group structure θ is unknown or partly known \biguplus Learning θ to improve results

Issue: difficult combinatorial problem

the number of possible partitions grows exponentially with the dimension

 \Rightarrow trying them all is out of reach

Idea: relax and optimize

$$\begin{array}{ll} \text{indicators/masks } \theta = [\theta_1 \dots \theta_L] & \xrightarrow{\text{relaxation}} & \text{probabilities } \theta = [\theta_1 \dots \theta_L] \in \Theta \text{ simplex} \\ \theta_l \text{ mask of group } l & \theta_{l,i} \in \{0,1\} & \theta_{l,i} \in [0,1] \end{array}$$

Learning the group structure θ

Issue: difficult combinatorial problem

the number of possible partitions grows exponentially with the dimension

 \Rightarrow trying them all is out of reach

Idea: relax and optimize

$$\begin{array}{ll} \text{indicators/masks } \theta = [\theta_1 \dots \theta_L] & \xrightarrow{\text{relaxation}} & \text{probabilities } \theta = [\theta_1 \dots \theta_L] \in \Theta \text{ simplex} \\ \theta_l \text{ mask of group } l & \theta_{l,i} \in \{0,1\} & \theta_{l,i} \in [0,1] \end{array}$$

Learning the group structure θ

In many scenarios, the group structure θ is unknown or partly known \biguplus Learning θ to improve results

Issue: difficult combinatorial problem the number of possible partitions grows exponentially with the dimension

 \Rightarrow trying them all is out of reach

Idea: relax and optimize

$$\begin{array}{ll} \text{indicators/masks } \theta = [\theta_1 \dots \theta_L] & \xrightarrow{\text{relaxation}} & \text{probabilities } \theta = [\theta_1 \dots \theta_L] \in \Theta \text{ simplex} \\ \theta_l \text{ mask of group } l & \theta_{l,i} \in \{0,1\} & \theta_{l,i} \in [0,1] \end{array}$$

Optimizing the probabilities θ

We would like to find the groups $\theta \in \Theta$ such that the structured predictor

$$\hat{w}(\theta) = \operatorname*{argmin}_{w} \left\{ \mathcal{L}(w; \theta) \triangleq \ \ell(y, \langle X, w \rangle) + \sum_{l=1}^{L} \rho_{l}(\theta_{l} \odot w) \right\}$$

generalizes well to unseen data

Idea: Find θ such that $\hat{w}(\theta)$ minimizes the validation error $\mathcal{E}(\hat{w}(\theta)) = \ell(y^{\mathrm{val}}, \langle X^{\mathrm{val}}, \hat{w}(\theta) \rangle)$ \Rightarrow type of continuous cross-validation

Bilevel Problem

$$\min_{\theta \in \Theta} \ \mathcal{E}(\hat{w}(\theta))$$
 s.t. $\hat{w}(\theta) = \operatorname*{argmin}_{w} \mathcal{L}(w; \theta)$

Optimizing the probabilities θ

We would like to find the groups $\theta \in \Theta$ such that the structured predictor

$$\hat{w}(\theta) = \underset{w}{\operatorname{argmin}} \left\{ \mathcal{L}(w; \theta) \triangleq \underbrace{\ell(y, \langle X, w \rangle)}_{\text{training error}} + \sum_{l=1}^{L} \rho_{l}(\theta_{l} \odot w) \right\}$$

generalizes well to unseen data

Idea: Find θ such that $\hat{w}(\theta)$ minimizes the validation error $\mathcal{E}(\hat{w}(\theta)) = \ell(y^{\mathrm{val}}, \langle X^{\mathrm{val}}, \hat{w}(\theta) \rangle)$ \Rightarrow type of continuous cross-validation

Bilevel Problem

$$\min_{\theta \in \Theta} \mathcal{E}(\hat{w}(\theta)) \qquad \text{s.t.} \qquad \hat{w}(\theta) = \operatorname*{argmin}_{w} \mathcal{L}(w; \theta)$$

Optimizing the probabilities θ

We would like to find the groups $\theta \in \Theta$ such that the structured predictor

$$\hat{w}(\theta) = \underset{w}{\operatorname{argmin}} \left\{ \mathcal{L}(w; \theta) \triangleq \underbrace{\ell(y, \langle X, w \rangle)}_{\text{training error}} + \sum_{l=1}^{L} \rho_l(\theta_l \odot w) \right\}$$

generalizes well to unseen data

Idea: Find θ such that $\hat{w}(\theta)$ minimizes the validation error $\mathcal{E}(\hat{w}(\theta)) = \ell(y^{\mathrm{val}}, \langle X^{\mathrm{val}}, \hat{w}(\theta) \rangle)$ \Rightarrow type of continuous cross-validation

Bilevel Problem

$$\min_{\theta \in \Theta} \ \mathcal{E}(\hat{w}(\theta)) \qquad \text{s.t.} \qquad \hat{w}(\theta) = \operatorname*{argmin}_{w} \mathcal{L}(w; \theta)$$

Bilevel Framework

Exact Problem

$$\min_{\theta \in \Theta} \ \left\{ \mathcal{U}(\theta) \triangleq \mathcal{E}(\hat{w}(\theta)) \right\}$$

s.t.
$$\hat{w}(\theta) = \underset{w}{\operatorname{argmin}} \mathcal{L}(w; \theta)$$

 $\hat{w}(\theta)$ without closed form

Bilevel Framework

Exact Problem

$$\min_{\boldsymbol{\theta} \in \Theta} \ \left\{ \mathcal{U}(\boldsymbol{\theta}) \triangleq \mathcal{E}(\hat{w}(\boldsymbol{\theta})) \right\}$$

s.t.
$$\hat{w}(\theta) = \underset{w}{\operatorname{argmin}} \mathcal{L}(w; \theta)$$

 $\hat{w}(\theta)$ without closed form

Approximate Problem

$$\min_{\theta \in \Theta} \left\{ \mathcal{U}^{(k)}(\theta) \triangleq \mathcal{E}(w^{(k)}(\theta)) \right\}$$

$$w^{(0)}(\theta) \text{ chosen arbitrarily}$$
for $i = 0, \dots, k - 1$

$$\mid w^{(i+1)}(\theta) = \mathcal{A}(w^{(i)}(\theta))$$

$$w^{(k)}(\theta) \rightarrow \hat{w}(\theta)$$

 $\mathcal{U}^{(k)}$ smooth if \mathcal{A} smooth

choice of A discussed next

Jordan Frécon 18 / 36

Bilevel Framework

Exact Problem

$$\min_{\theta \in \Theta} \ \left\{ \mathcal{U}(\theta) \triangleq \mathcal{E}(\hat{w}(\theta)) \right\}$$

s.t.
$$\hat{w}(\theta) = \underset{w}{\operatorname{argmin}} \mathcal{L}(w; \theta)$$

Approximate Problem

$$\min_{\theta \in \Theta} \left\{ \mathcal{U}^{(k)}(\theta) \triangleq \mathcal{E}(w^{(k)}(\theta)) \right\}$$
s.t.
$$\begin{aligned} w^{(0)}(\theta) & \text{chosen arbitrarily} \\ \text{for } i = 0, \dots, k-1 \\ \lfloor w^{(i+1)}(\theta) = \mathcal{A}(w^{(i)}(\theta)) \\ w^{(k)}(\theta) \rightarrow \hat{w}(\theta) \end{aligned}$$

 $\hat{w}(\theta)$ without closed form

 $\mathcal{U}^{(k)}$ smooth if \mathcal{A} smooth

$$\begin{array}{l} \theta^{(0)} \text{ chosen arbitrarily} \\ \text{for } n=0,1,\dots \\ \\ \begin{bmatrix} w^{(0)}(\theta^{(n)}) \text{ chosen arbitrarily} \\ \text{for } i=0,\dots,k-1 \\ \\ \lfloor w^{(i+1)}(\theta^{(n)}) = \mathcal{A}(w^{(i)}(\theta^{(n)})) \\ \theta^{(n+1)} = \operatorname{Proj}_{\Theta}(\theta^{(n)} - \gamma \nabla \mathcal{U}^{(k)}(\theta^{(n)})) \end{array} \text{ where } \mathcal{U}^{(k)}(\theta^{(n)}) = \mathcal{E}(w^{(k)}(\theta^{(n)})) \end{array}$$

Jordan Frécon 18 / 36

Algorithmic Solution

Group Lasso solver \mathcal{A}

Optimization problem

$$\underset{w \in \mathbb{R}^{P}}{\mathsf{minimize}} \ \underbrace{\frac{1}{2}\|y - Xw\|_{2}^{2}}_{f(w) \ \mathsf{differentiable}} + \underbrace{\lambda \sum_{l=1}^{L} \|\theta_{l} \odot w\|_{2}}_{g(A_{\theta} \, w) \ \mathsf{non} \ \mathsf{differentiable}}$$

where
$$A_{\theta}: w \in \mathbb{R}^P \mapsto (\theta_1 \odot w, \dots, \theta_L \odot w) \in \mathbb{R}^{P \times L}$$

Forward-backward algorithm [Combettes and Wajs (2005)]

$$\begin{cases} \text{ for } i = 0, \dots, k - 1 \\ w^{(i+1)}(\theta) = \text{prox}_{\beta \mathsf{go} A_{\theta}} \left(w^{(i)}(\theta) - \beta \nabla f(w^{(i)}(\theta)) \right) \end{cases}$$

Group Lasso solver \mathcal{A}

Optimization problem

$$\underset{w \in \mathbb{R}^{P}}{\operatorname{minimize}} \ \underbrace{\frac{1}{2}\|y - Xw\|_{2}^{2}}_{f(w) \ \text{differentiable}} + \underbrace{\lambda \sum_{l=1}^{L} \|\theta_{l} \odot w\|_{2}}_{g(A_{\theta} w) \ \text{non differentiable}}$$

where
$$A_{\theta}: w \in \mathbb{R}^P \mapsto (\theta_1 \odot w, \dots, \theta_L \odot w) \in \mathbb{R}^{P \times L}$$

Forward-backward algorithm [Combettes and Wajs (2005)]

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \mid w^{(i+1)}(\theta) = \operatorname{prox}_{\beta g \circ A_{\theta}} \left(w^{(i)}(\theta) - \beta \nabla f(w^{(i)}(\theta)) \right) \end{cases}$$

$$proximity operator (prox)? \longrightarrow \text{see next slide}$$

Proximity operator

In the 1960s, [Moreau (1962)] proposed an extension of the notion of projection operator to any convex function h, leading to the so-called proximity operator

$$\operatorname{Proj}_{\mathcal{C}}(v) = \underset{w \in \mathcal{C}}{\operatorname{argmin}} \frac{1}{2} \|w - v\|_{2}^{2}$$

$$= \underset{w \in \mathbb{R}^{P}}{\operatorname{argmin}} i_{\mathcal{C}}(w) + \frac{1}{2} \|w - v\|_{2}^{2} \quad \text{where} \quad i_{\mathcal{C}}(w) = \begin{cases} 0 & \text{if } w \in \mathcal{C} \\ +\infty & \text{otherwise} \end{cases}$$

$$\operatorname{prox}_h(v) = \underset{w \in \mathbb{R}^P}{\operatorname{argmin}} \ h(w) + \frac{1}{2} \|w - v\|_2^2$$

Group Lasso solver \mathcal{A}

Optimization problem

minimize
$$\underbrace{\frac{1}{2}\|y - Xw\|_2^2}_{f(w) \text{ differentiable}} + \lambda \sum_{l=1}^{L} \|\theta_l \odot w\|_2$$

where
$$A_{\theta}: w \in \mathbb{R}^P \mapsto (\theta_1 \odot w, \dots, \theta_L \odot w) \in \mathbb{R}^{P \times L}$$

Forward-backward algorithm [Combettes and Wajs (2005)]

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left\lfloor w^{(i+1)}(\theta) = \text{prox}_{\beta \mathsf{go}A_{\theta}} \left(w^{(i)}(\theta) - \beta \nabla f(w^{(i)}(\theta)) \right) \end{cases}$$

generalization of projected gradient descent projection → proximity operator

$$\operatorname{prox}_{\beta g \circ A_{\theta}}(v) = \operatorname*{argmin}_{w \in \mathbb{P}^{p}} \beta g(A_{\theta} w) + \frac{1}{2} \|w - v\|_{2}^{2}$$
 without closed form

Group Lasso solver \mathcal{A}

Optimization problem

$$\underset{w \in \mathbb{R}^{P}}{\mathsf{minimize}} \ \ \frac{1}{2} \|y - Xw\|_{2}^{2} + \lambda \sum_{l=1}^{L} \|\theta_{l} \odot w\|_{2}$$

$$f(w) \ \text{differentiable}$$

$$g(A_{\theta} w) \ \text{non differentiable}$$

where
$$A_{\theta}: w \in \mathbb{R}^P \mapsto (\theta_1 \odot w, \dots, \theta_L \odot w) \in \mathbb{R}^{P \times L}$$

Forward-backward algorithm [Combettes and Wajs (2005)]

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left\lfloor w^{(i+1)}(\theta) = \text{prox}_{\beta g \circ A_{\theta}} \left(w^{(i)}(\theta) - \beta \nabla f(w^{(i)}(\theta)) \right) \end{cases}$$

generalization of projected gradient descent projection → proximity operator

Duality in convex optimization

The ideas of duality and transforms are ubiquitous in mathematics

- Harmonics analysis \rightarrow Fourier transform
- Convex analysis \rightarrow Fenchel conjugate: $h^*(x) = \sup_{w} \langle w, x \rangle h(w)$ [Rockafellar (1970)]

Example:
$$h: w \mapsto \|w\|_2 \implies h^*: x \mapsto i_{\mathcal{B}(1)}(x) = \begin{cases} 0 & \text{if } \|x\|_2 \leq 1 \\ +\infty & \text{otherwise} \end{cases}$$

Duality in convex optimization

The ideas of duality and transforms are ubiquitous in mathematics

- Harmonics analysis \rightarrow Fourier transform
- Convex analysis \rightarrow Fenchel conjugate: $h^*(x) = \sup_{w} \langle w, x \rangle h(w)$ [Rockafellar (1970)]

Example:
$$h: w \mapsto \lambda ||w||_2 \Rightarrow h^*: x \mapsto \imath_{\mathcal{B}(\lambda)}(x) = \begin{cases} 0 & \text{if } ||x||_2 \leq \lambda \\ +\infty & \text{otherwise} \end{cases}$$

Duality in convex optimization

The ideas of duality and transforms are ubiquitous in mathematics

- Harmonics analysis o Fourier transform
- Convex analysis \rightarrow Fenchel conjugate: $h^*(x) = \sup_{w} \langle w, x \rangle h(w)$ [Rockafellar (1970)]

$\begin{array}{lll} & \text{Primal problem} & \longleftrightarrow & \text{Dual problem} \\ & \underset{w \in \mathbb{R}^P}{\text{minimize}} \ f(w) + g(A_\theta w) & \underset{u \in \mathbb{R}^{P \times L}}{\text{minimize}} \ f^*(-A_\theta^\top u) + g^*(u) \\ & A_\theta \colon \mathbb{R}^P \to \mathbb{R}^{P \times L} & A_\theta^\top \colon \mathbb{R}^{P \times L} \to \mathbb{R}^P \\ & g(v_1 \dots v_L) = \sum_{l=1}^L \underbrace{\lambda \|v_l\|_2}_{\text{norm}} & g^*(u_1 \dots u_L) = \sum_{l=1}^L \underbrace{\iota_{\mathcal{B}(\lambda)}(u_l)}_{\text{indicator dual norm ball}} \end{array}$

 $w = \nabla f^*(-\mathbf{A}_0^{\mathsf{T}} \mathbf{u})$

 $\operatorname{prox}_{g \circ A_{\theta}}$ without closed form \Rightarrow solve dual problem to move A_{θ} in smooth part

Group Lasso solver A: dual approach

Dual problem

$$\underset{u \in \mathbb{R}^{P \times L}}{\mathsf{minimize}} \ \underbrace{f^*(-A_{\theta}^{\top} u)}_{\mathsf{differentiable}} + \underbrace{g^*(u)}_{\mathsf{non differentiable}}$$

Dual forward-backward algorithm

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left\lfloor u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*} \left(u^{(i)}(\theta) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta}^* u^{(k)}(\theta)) \end{cases}$$
 (link)

Group Lasso solver A: dual approach

Dual problem

$$\underset{u \in \mathbb{R}^{P \times L}}{\mathsf{minimize}} \underbrace{f^*(-A_{\theta}^{\top}u)}_{\mathsf{differentiable}} + \underbrace{g^*(u)}_{\mathsf{non differentiable}}$$

Dual forward-backward algorithm

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left[u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*} \left(u^{(i)}(\theta) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta}^* u^{(k)}(\theta)) \end{cases}$$
 (link)

where the proximal operator reads:

$$\begin{aligned} \operatorname{prox}_{\beta g^*}(v) &= \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta g^*(u) + \frac{1}{2} \|u - v\|^2 \\ &= \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta \sum_{l=1}^{L} \imath_{\mathcal{B}(\lambda)}(u_l) + \frac{1}{2} \|u - v\|^2 \\ &= \operatorname{Proj}_{\mathcal{B}(\lambda)^L}(v) \quad \wedge \quad \text{not differentiable} \end{aligned}$$

Reminder: why differentiability is important

We want a differentiable dual forward-backward algorithm because it inside a bilevel algorithm!

Group Lasso solver A: dual approach

Dual forward-backward algorithm

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left\lfloor u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*} \left(u^{(i)}(\theta) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\begin{aligned} \operatorname{prox}_{\beta g^*}(v) &= \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta g^*(u) + \frac{1}{2} \|u - v\|^2 \\ &= \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta g^*(u) + \frac{1}{2} \|u\|^2 - \langle u, v \rangle + \operatorname{cst} \end{aligned}$$

Group Lasso solver A: dual approach

Dual forward-backward algorithm

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left[u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*} \left(u^{(i)}(\theta) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\operatorname{prox}_{\beta g^*}(v) = \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta g^*(u) + \frac{1}{2} \|u\|^2 - \langle u, v \rangle + \operatorname{cst}$$

Group Lasso solver \mathcal{A} : dual approach

Dual forward-backward algorithm with Bregman distances [Bauschke et al. (2016)]

$$\begin{cases} \text{for } i = 0, \dots, k-1 \\ \left[u^{(i+1)}(\theta) = \underset{\beta g^*}{\text{prox}} \frac{\Phi}{\beta g^*} \left(\nabla \Phi(u^{(i)}(\theta)) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where the Bregman proximal operator associated to Φ :

$$\operatorname{prox}_{\beta g^*}^{\Phi}(v) = \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta g^*(u) + \Phi(u) - \langle u, v \rangle$$

Dual forward-backward algorithm with Bregman distances

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left\lfloor u^{(i+1)}(\theta) = \underset{\beta g^*}{\operatorname{prox}} (\nabla \Phi(u^{(i)}(\theta)) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta))) \right. \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\operatorname{prox}_{\beta g^*}^{\Phi}(v) = \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \beta g^*(u) + \Phi(u) - \langle u, v \rangle$$

Dual forward-backward algorithm with Bregman distances

$$\begin{cases} \text{for } i = 0, \dots, k-1 \\ \left[u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*}^{\Phi} \left(\nabla \Phi(u^{(i)}(\theta)) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\operatorname{prox}_{\beta g^*}^{\Phi}(v) = \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \sum_{l=1}^{L} \imath_{\mathcal{B}(\lambda)}(u_l) + \Phi(u) - \langle u, v \rangle$$

Dual forward-backward algorithm with Bregman distances

$$\begin{cases} \text{for } i = 0, \dots, k-1 \\ \left[u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*}^{\Phi} \left(\nabla \Phi(u^{(i)}(\theta)) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\operatorname{prox}_{\beta \mathsf{g}^*}^{\Phi}(v) = \operatorname*{argmin}_{u \in \mathbb{R}^{P \times L}} \sum_{l=1}^{L} \left(\imath_{\mathcal{B}(\lambda)}(u_l) + \phi(u_l) - \langle u_l, v_l \rangle \right)$$

for
$$\Phi(u) = \sum_{l=1}^{L} \phi(u_l)$$

Dual forward-backward algorithm with Bregman distances

$$\begin{cases} \text{for } i = 0, \dots, k-1 \\ \left\lfloor u^{(i+1)}(\theta) = \operatorname{prox}_{\beta g^*}^{\Phi} \left(\nabla \Phi(u^{(i)}(\theta)) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\operatorname{prox}_{\beta \mathsf{g}^*}^{\Phi}(\mathsf{v}) = \operatorname*{argmin}_{\mathsf{u} \in \mathbb{R}^{P \times L}} \sum_{l=1}^{L} \left(\imath_{\mathcal{B}(\lambda)}(\mathsf{u}_l) - \sqrt{\lambda^2 - \|\mathsf{u}_l\|^2} - \langle \mathsf{u}_l, \mathsf{v}_l \rangle \right)$$

for
$$\phi(u_l) = -\sqrt{\lambda^2 - \|u_l\|^2} \Rightarrow \operatorname{dom} \phi = \mathcal{B}(\lambda)$$

 $\Rightarrow \imath_{\mathcal{B}(\lambda)}(u_l)$ always equal to 0!

↑ trick for a differentiable algorithm

Dual forward-backward algorithm with Bregman distances

$$\begin{cases} \text{ for } i = 0, \dots, k-1 \\ \left\lfloor u^{(i+1)}(\theta) = \underset{\beta g^*}{\operatorname{prox}} \frac{\Phi}{\beta g^*} \left(\nabla \Phi(u^{(i)}(\theta)) + \beta A_{\theta} \nabla f^*(-A_{\theta}^{\top} u^{(i)}(\theta)) \right) \\ w^{(k)}(\theta) = \nabla f^*(-A_{\theta} u^{(k)}(\theta)). \end{cases}$$

where

$$\operatorname{prox}_{\beta \mathsf{g}^*}^{\Phi}(\mathsf{v}) = \left(\frac{\lambda \mathsf{v}_l}{\sqrt{1 + \|\mathsf{v}_l\|_2^2}}\right)_{l=1,\dots,L}$$

Convergence Guarantees

Convergence $w^{(k)}(\theta) \rightarrow \hat{w}(\theta)$

Theorem 1: For every $\theta \in \Theta$, $\|w^{(k)}(\theta) - \hat{w}(\theta)\|^2 \leq \frac{\text{Const}}{k}$

Convergence " $\mathcal{U}^{(k)}(\theta) \to \mathcal{U}(\theta)$ "

Theorem 2: Assume that Θ is a non-empty compact subset of $\mathbb{R}_+^{P \times L}$. If the iterates $\{\mathbf{w}^{(k)}(\theta)\}_{k \in \mathbb{N}}$ converge to $\hat{\mathbf{w}}(\theta)$ uniformly in Θ when $k \to +\infty$, then

$$\inf_{\theta \in \Theta} \mathcal{U}^{(k)}(\theta) \underset{k \to +\infty}{\longrightarrow} \inf_{\theta \in \Theta} \mathcal{U}(\theta) \qquad \text{and} \qquad \operatorname*{argmin}_{\theta \in \Theta} \ \mathcal{U}^{(k)}(\theta) \underset{k \to +\infty}{\longrightarrow} \operatorname*{argmin}_{\theta \in \Theta} \ \mathcal{U}(\theta)$$

Reminder :
$$\begin{cases} \mathcal{U}(\theta) &= \mathcal{E}(\hat{w}(\theta)) \\ \mathcal{U}^{(k)}(\theta) &= \mathcal{E}(\hat{w}^{(k)}(\theta)) \end{cases}$$

Numerical Experiments

Setting

Setting: T = 500 tasks, N = 25 noisy observations, P = 50 parameters.

Goal: Estimate and group the parameters

$$y_t = X_t w_t^* + \epsilon_t$$
 where $\epsilon_t \sim \mathcal{N}(0, \sigma = 0.1)$

Jordan Frécon 30 / 36

Result

Recover the correct groups! (just different ordering)

Jordan Frécon 31 / 36

When the number of groups is unknown

Works even when the number of groups is unknown!

Conclusion

Conclusion

1. Define structured predictor with groups θ

$$\hat{w}(\theta) = \operatorname*{argmin}_{w} \mathcal{L}(w; \theta)$$

2. **Ideal:** find groups θ such that $\hat{w}(\theta)$ minimizes the validation error

$$\min_{\theta \in \Theta} \frac{\mathcal{E}(\hat{w}(\theta))}{\mathcal{E}(\hat{w}(\theta))} \quad \text{s.t.} \qquad \hat{w}(\theta) = \operatorname*{argmin}_{w} \mathcal{L}(w; \theta)$$

3. Practice: solve a differentiable bilevel problem

$$\min_{\theta \in \Theta} \ \mathcal{E}(w^{(k)}(\theta)) \quad \text{s.t.} \quad \begin{cases} w^{(0)}(\theta) \text{ chosen arbitrarily} \\ \text{for } i = 0, \dots, k-1 \\ \mid \ w^{(i+1)}(\theta) = \mathcal{A}(w^{(i)}(\theta)) \end{cases} \quad \text{with } \mathcal{A} \text{ differentiable}$$

Jordan Frécon 34 / 36

What is next

- 1. More complex structures (overlapping, hierarchical, ...)
- 2. New multi-task models to transfer learning
- 3. Theoretical guarantees for bilevel optimization (global minima, convergence rate, \ldots)

Jordan Frécon 35 / 36

Thank you

- "H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Mathematics of Operations Research, 2016."
- "P. L Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. In SIAM Multiscale Modeling & Simulation. 2005"
- "J. Frecon, S. Salzo, and M. Pontil. Bilevel learning of the group Lasso structure. In Advances in Neural Information Processing Systems (NeurIPS). 2018"
- "J. Frecon, S. Salzo, and M. Pontil. Unveiling groups of related tasks in multi-task learning. In Proceedings of the International Conference on Patterns Recognition (ICPR). 2020"
- "C. Higuera, K.J. Gardiner, K.J. Cios. Self-organizing feature maps identify proteins critical to learning in a mouse model of down syndrome. In PLoS ONE. 2015"
- "Z. Kang, K. Grauman and F. Sha. Learning with whom to share in multi-task feature learning. In Proceedings of the International Conference on Machine Learning (ICML), 2011."
- "M. Kshirsagar, E. Yang, A.C. Lozano. learning task clusters via sparsity grouped multitask learning. In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2017."
- "C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2009"
- "J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes Rendus de l'Académie des Sciences de Paris. 1962."
- "T. K. Pong, P. Tseng, S. Ji, and J. Ye. Trace norm regularization: reformulations, algorithms, and multi-task learning. In SIAM Journal of Optimization. 2010"
- "R.T.Rockafellar. Convex analysis. Princeton university press. 1970"
- "D. Sabbagh, P. Ablin, G. Varoquaux, A. Gramfort, and D. Engemann. Manifold-regression to predict from MEG/EEG brain signals without source modeling In Advances in Neural Information Processing Systems. 2019"
- "M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. In Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2006"

Jordan Frécon

What is next (theoretical guarantees)

Exact problem

$$\min_{ heta \in \Theta} \ \left\{ \mathcal{U}(heta) riangleq \mathcal{E}(\hat{w}(heta))
ight\}$$

s.t.
$$\hat{w}(\theta) = \operatorname*{argmin}_{w \in \mathcal{W}} \mathcal{L}(w; \theta)$$

Approximate problem

$$\min_{\theta \in \Theta} \left\{ \mathcal{U}^{(k)}(\theta) \triangleq \mathcal{E}(w^{(k)}(\theta)) \right\}$$

$$w^{(0)}(\theta) \text{ chosen arbitrarily}$$
for $i = 0, \dots, k - 1$

$$\downarrow w^{(i+1)}(\theta) = \mathcal{A}(w^{(i)}(\theta))$$

$$w^{(k)}(\theta) \to \hat{w}(\theta)$$

$$\theta^{(n+1)} = \text{Proj}_{\Theta}(\theta^{(n)} - \mu \nabla \mathcal{U}^{(k)}(\theta^{(n)}))$$

- $\bullet \inf_{\theta \in \Theta} \mathcal{U}^{(k)}(\lambda) \underset{k \to +\infty}{\longrightarrow} \inf_{\theta \in \Theta} \mathcal{U}(\lambda) \checkmark$
- $\underset{\theta \in \Theta}{\operatorname{argmin}} \, \mathcal{U}^{(k)}(\lambda) \underset{k \to +\infty}{\longrightarrow} \underset{\theta \in \Theta}{\operatorname{argmin}} \, \mathcal{U}(\lambda) \checkmark$ $\lim_{k \to \infty} \nabla \mathcal{U}^{(k)}(\theta) \in \partial \mathcal{U}(\theta)$?
- Efficient computation of $\nabla \mathcal{U}^{(k)}$

- Impact of warm-restart on $w^{(0)}$?
- $\lim_{n\to\infty}\theta^{(n)}\in\partial\mathcal{U}^{-1}(0)$?

Jordan Frécon

1 / 6

Numerical Experiments

Reminder :
$$[w_1^{(k)}(\theta) \cdots w_T^{(k)}(\theta)] \rightarrow [\hat{w}_1(\theta) \cdots \hat{w}_T(\theta)]$$

(GL) group Lasso with oracle groups (Lasso) Lasso (BiGL) proposed method

Convergence of the upper iterates

Convergence to a stationary point

Theorem 3: For \bar{n} uniformly sampled in $\{1, \ldots, n_{\text{max}}\}$:

$$\mathbb{E}\left[\|G_{\gamma}(\theta^{(\bar{n})})\|^{2}\right] \leq \frac{\operatorname{Const}}{n_{\mathsf{max}}},$$

where G_{γ} with step-size γ

$$extstyle extstyle G_{\gamma}(heta) = rac{1}{\gamma}ig(heta - \mathcal{P}_{\Theta}(heta - \gamma
abla \mathcal{U}^{(k)}(heta)ig)$$

Intuition: Without the projection, $G_{\gamma}(\theta) = \nabla \mathcal{U}^{(k)}(\theta)$

Hypergradient Computation

$$\begin{cases} u^{(0)}(\theta) \in \mathcal{H} \\ \text{for } i = 0, \dots, k - 1 \\ \left\lfloor u^{(i+1)}(\theta) = \mathcal{A}(u^{(i)}(\theta), \theta) \\ w^{(k)}(\theta) = \mathcal{B}(u^{(k)}(\theta), \theta), \end{cases}$$

$$(1)$$

we get

$$\nabla \mathcal{U}^{(k)}(\theta) = (u^{(k)})'(\theta)^{\top} \partial_1 \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla \mathcal{C}(w^{(k)}(\theta)) + \partial_2 \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla \mathcal{C}(w^{(k)}(\theta)).$$
(2)

Moreover, using the updating rule for $u^{(i)}(\theta)$ in (1) we have

$$(u^{(i+1)})'(\theta) = \partial_1 \mathcal{A}(u^{(i)}(\theta), \theta)(u^{(i)})'(\theta) + \partial_2 \mathcal{A}(u^{(i)}(\theta), \theta). \tag{3}$$

Setting $A_1^{(i)}(\theta) = \partial_1 \mathcal{A}(u^{(i)}(\theta), \theta)$ and $A_2^{(i)}(\theta) = \partial_2 \mathcal{A}(u^{(i)}(\theta), \theta)$, we have

$$(u^{(i+1)})'(\theta)^{\top} = (u^{(i)})'(\theta)^{\top} A_1^{(i)}(\theta)^{\top} + A_2^{(i)}(\theta)^{\top}.$$
(4)

Hypergradient Computation

Then, by combining the two equations above we have

$$\nabla \mathcal{U}^{(k)}(\theta) = (u^{(k)})'(\theta)^{\top} \partial_{1} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla C(w^{(k)}(\theta)) + \partial_{2} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla C(w^{(k)}(\theta))$$

$$= (u^{(k-1)})'(\theta)^{\top} A_{1}^{(k-1)}(\theta)^{\top} \underbrace{\partial_{1} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla C(w^{(k)}(\theta))}_{a_{Q}} + A_{2}^{(k-1)}(\theta)^{\top} \underbrace{\partial_{1} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla C(w^{(k)}(\theta))}_{a_{k}} + \underbrace{\partial_{2} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \nabla C(w^{(k)}(\theta))}_{b_{k}} + \underbrace{\partial_{2} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \partial C(w^{(k)}(\theta), \theta)}_{b_{k}} + \underbrace{\partial_{2} \mathcal{B}(u^{(k)}(\theta), \theta)^{\top} \partial C(w^{(k)}(\theta), \theta)}_{b_{k}} + \underbrace{\partial_{2} \mathcal{B}($$

where in the last line we used that $u^{(0)}(\theta)$ is constant.

Comparison with state-of-the-art

State-of-the-art: joint optimization [Kang et al. (2011), Kshirsagar et al. (2017).]

$$(\hat{w}, \hat{\theta}) = \operatorname*{argmin}_{w,\theta \in \Theta} \ \Big\{ \mathcal{L}(w; \theta) \triangleq \ \ell(y, \langle X, w \rangle) + \sum_{l=1}^{L} \rho_{l}(\theta_{l} \odot w) \Big\}$$

issues: some trivial undesired minima unclear interpretation of the solution

Proposed method: bilevel optimization [Frecon et al. (2018), Frecon et al. (2020).]

$$\min_{\theta \in \Theta} \ \mathcal{E}(\hat{w}(\theta)) \qquad \text{s.t.} \qquad \hat{w}(\theta) = \operatorname*{argmin}_{w} \mathcal{L}(w; \theta)$$

idea: find θ such that $\hat{w}(\theta)$ generalizes well to unseen data \rightarrow choose \mathcal{E} as the validation error