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Example 1: Structured linear regression

Setting presented in
[Frecon et al. "Bilevel learning of the group Lasso structure". NeurlPS (2018)]



Motivation: genes expression analysis

Goal : Predict the function of proteins from regulatory patterns
Collaboration with Giorgio Valentini (Universita degli Studi di Milano)

Nucleus
Cell

Chromosomes

—— Protein

Gene = long sequence with regulatory patterns (dictate gene expression)

~

Proteins perform various functions (transport, redox, binding ...)
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Motivation: genes expression analysis

Regulatory patterns Protein sub-functions (Gene Ontology)
Ri R, R; .. Rp Go, Go, Gos Gor
CTGAC GGATC GCAAG ATCAG transport redox binding
Gene 1 | 1 | 1 | 0 | | 0 | s heuron = | 1 | 0 | 0 | | 1 |

Sequences Ry and R are present in Gene 1
Gene 1 produces neurons
Neurons perform transport of electrons

/36



Motivation: genes expression analysis

Gene 1
Gene 2

Regulatory patterns

Ry Ry Rs Rp
CTGAC  GGATC  GCAAG ATCAG
1 1 0 0
1 1 1 0

s neuron
Az hormone

Sequences Ri1, R» and Rs are present in Gene 2

Gene 2 produces hormones

Protein sub-functions (Gene Ontology)

Go, Go, Gos Gor

transport  redox  binding

1 0 0 1

1 1 0 0

Hormones perform transport of particles and reduction—oxidation
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Motivation: genes expression analysis

Regulatory patterns

Ri R, R; .. Rp

CTGAC GGATC GCAAG ATCAG
Gene 1 1 1 0 0
Gene 2 1 1 1 0
Gene 3 0 0 0 1

Sequence Rp is present in Gene 3
Gene 3 produces antibodies

M- neuron
As— hormone
A antibody

Antibodies perform binding of particles

Protein sub-functions (Gene Ontology)

Go, Go, Gos Gor
transport  redox  binding
1 0 0 1
1 1 0 0
0 0 1
4/36



Motivation: genes expression analysis

Regulatory patterns

Ri R, R; .. Rp
CTGAC GGATC GCAAG ATCAG
Gene 1 1 1 0 0
Gene 2 1 1 1 0
Gene 3 0 0 0 1
Gene N 1 1 0 1
Xe {0,1}N><P

Protein sub-functions (Gene Ontology)

Go, Go, Gos Gor
transport  redox  binding
Mg nNeuron = 1 0 0 1
AF=— hormone = 1 1 0 0
A= antibody = 0 0 1
0 0 1 1
y =y yr] €01
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Motivation: genes expression analysis

Regulatory patterns

Ri R, R; .. Rp
CTGAC GGATC GCAAG ATCAG
Gene 1 1 1 0 0
Gene 2 1 1 1 0
Gene 3 0 0 0 1
Gene N 1 1 0 1
Xe {0,1}N><P

Goal 1: Predict each y; from X

Protein sub-functions (Gene Ontology)

Go, Go, Gos Gor
transport  redox binding
Mg nNeuron = 1 0 0 1
A¥z— hormone = 1 1 0 0
A= antibody = 0 0 1
0 0 1 1

y = [y1 - yr] €0,
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Motivation: genes expression analysis

Regulatory patterns Protein sub-functions (Gene Ontology)
Ri R, R; .. Rp Go, Go, Gos Gor
CTGAC GGATC GCAAG ATCAG transport redox binding
Gene 1 Mg nNeuron =
Gene 2 A5 hormone =
Gene 3 A= antibody =
Gene N
X € RV y=[nyr] €ERVT

Goal 1: Predict each y; from X

— to generalize: X and y are not only made of 0’s and 1's
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Motivation: genes expression analysis

Regulatory patterns Protein sub-functions (Gene Ontology)
Ri R, R; .. Rp Go, Go, Gos Gor
CTGAC GGATC GCAAG ATCAG transport redox binding
Gene 1 Mip— Neuron =
Gene 2 A¥z— hormone =
Gene 3 A= antibody =
Gene N
X € RN*P y€ERM

Goal 1: Predict y from X

— to generalize: X and y are not only made of 0’s and 1's
— to simplify: we first assume that T = 1 and omit the index t

/36



Motivation: genes expression analysis

Regulatory patterns Protein sub-functions (Gene Ontology)
Ri R, R; .. Rp Go, Go, Gos Gor
CTGAC GGATC GCAAG ATCAG transport redox binding
Gene 1 Mip— Neuron =
Gene 2 A¥z— hormone =
Gene 3 A= antibody =
Gene N
X € RN*P y€ERM

Goal 1: Predict y from X

— to generalize: X and y are not only made of 0's and 1's
— to simplify: we first assume that T = 1 and omit the index t

Goal 2: Discover if there exist some groups in X
ex: Ry and R» are both equally relevant to predict y
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Assumptions

Model the observations
= linear model + Gaussian distribution: there exists w such that y ~ N(Xw, o)

Model the group structure
few groups of features in X are relevant to predict y
= group sparsity: some groups of variables in w are zero while others are non-zero

qu

| Iolefe]
\_T_J \_T_I
§ &

y €RN X € RV*P

mielefe]

T
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Optimization problem

Goal 1: Predict y from X  Group Lasso [Yuan and Lin (2006)]

L
" .1
W(G1,...,G) = argmin S|y — Xw[>+ XD [|wo, |2
wERP 2 =1
o — log p(y|Xw) enforces structure
W
A5 — — — —
" wo, L partitions G1, ..., G, of P features
| GEAL.. Py
30 oo WGa . g,mg,,:(Z)if/;A/’
40 Wog UG =1{1,...,P}
50 -5
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Optimization problem

Goal 1: Predict y from X  Group Lasso [Yuan and Lin (2006)]

L
,\ .1 2
W(G1,...,G1) = argmin Sly — Xwl[]"+ X > llwg, |2
wERP =1
oc— log p(y | Xw) enforces structure
w s Oracle 0* = [0} - - - 67]
10 10
0
20 £ 20
£
30 £ 30
40 40
50 S 50
1 2 3 4
Groups
Mask 6; = {0,1}P of the /-th group
element-wise multiplication 6, ® w = [9/,1 wy, 0/,2 Wa, ... ,0/,PWP]T
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Optimization problem

Goal 1: Predict y from X  Group Lasso [Yuan and Lin (2006)]

L

" .1
W(G,... Gi) = argmin S ly = Xw|®+ XY [lwe |2

weRP

=1
oc— log p(y | Xw) enforces structure
w 5 Oracle 0* = [0} - - - 67]

10 wg, =01 Ow 10
,,,,,,,,,,,,,,, )

20 wg, = 0> O w & 20
=05 e E
0 = wgy =03 Ow === =

30 We, =02 Ow. _ _ g 30
=

40 wgg = 05 O w 40

50 5 50

Goal 2: Discover the structure of X

1 2 3 4 5
Groups

— finding {G1,...,G1} <= learning the hyperparameter § = [6; - --6,] € {0,1}"**
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Reminder

Regulatory patterns Protein sub-functions (Gene Ontology)
Ri R, R; . Rp Go, Go, Gos Gor
CTGAC GGATC  GCAAG ATCAG transport redox binding
Gene 1 Ms— nNeuron =
Gene 2 A¥— hormone =
Gene 3 A= antibody =
Gene N
X € RV*P y€ERN

Goal 1: Predict y from X

— to generalize: X and y are not only made of 0’s and 1's
— to simplify: we first assume that T = 1 and omit the index t
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Reminder

Regulatory patterns Protein sub-functions (Gene Ontology)
Ri R, R; . Rp Go, Go, Gos Gor
CTGAC GGATC  GCAAG ATCAG transport redox binding
Gene 1 M- nNeuron =
Gene 2 A¥— hormone =
Gene 3 A= antibody =
Gene N
X e RVP y =y yr] € RVT

Goal 1: Predict y from X

— to generalize: X and y are not only made of 0’s and 1's
TH R IR | W Y sstyie/ ENVaL T 1 1 RN [t E6 et/ £

Now we consider all T tasks

y e RV — y e RVXT
weRP — w e RPXT
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Single task w € RP — Multi-task [wy - - - wr] € RPXT

Multi-task setting : T tasks sharing the same group structure

L
. 1
(Ve (L., T}) #e(0) € argmin - lye — Xwel |+ XD 110/ © w2,

w; ERP =1

Oracle 0* = [0} --- 03]

10 10
P 0
£ 20 £ 20
B 0 B
] ]
& 30 & 30

40 40

50 -5 50

123456782910 1 2 3 4 5
Tasks Groups

Some groups are relevant (non-zero) for some tasks and irrelevant (zero) for others
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Example 2: Multi-task classification

Setting presented in
Frecon et al. "Unveiling groups of related tasks in multi-task learning". ICPR (2020
g8



Motivation: animal recognition

T animal classes

Number of
samples

A 4

many

X € RV*P made of N vectorized image of P pixels
y € RV*T such that yi,t = 1 if X; belongs to the t-th animal class, 0 otherwise.

Issue: some classes of animals with very few samples (e.g., dalmatians & chimpanzees)
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Motivation: animal recognition

T animal classes

=

X Bad Model

X Bad Model

Number of
samples

= 7 Good Model
v Good Model
many v Good Model
Naive idea: T binary classification tasks of one type of animal vs. all
logistic model: (Yt € {1,..., T}), 3Iw: € R” | y; ~ Bernouilli(p;) with p, = m

estimate w1, ..., wr = T independent binary logistic regressions
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Motivation: animal recognition

T animal classes

: %
x § » X Bad Model . i
X Bad Model :
Number of ' ;
samples \ 1 Transfer
i Learning H
Transfer :
Learning X ’/ Y
A »
S 7 Good Model
v Good Model
many Vv Good Model
Proposed idea: learn classifiers of similar animals jointly
. . . P . . . . 1
logistic model: (Vt € {1,...,T}), 3w: € R" | y¢ ~ Bernouilli(p;) with p; = Tren(—Xw)

estimate w = [wy - - - wr| = Multi-task binary logistic regression
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How to transfer learning between similar tasks

Model the observations
(Vt€{1,...,T}), Ims € RP | y: ~ Bernouilli(p;) with p; = 1/(1 + exp(—Xw:))

Model task-relatedness

dalmatian (white + black spots) = deer (brown + white spots)
= find Waalmatian X Wdeer OF more generally [Waaimatian Wdeer] low-rank

/Task 3

W, W W5 W, Ws
L § ) | )
" ‘r
K [W1 W:] low rank J \ [Ws WaWs] low rank /
Group 1: “4 legs + spots” Group 2: primates
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Optimization problem

Multi-task logistic regression: [Pong et al. (2010)] —> here extended to L groups

T L
w(G1,...,G.) = argmin Z log(1 — ye - Xwe) + )\Z [lwg, ||

w=lwawr] o =1
oc— log p(ye | Xwe) enforces structure
Trace norm || - ||t = sum of singular values = enforces low-rank

w = [w; - wy)

L partitions G1,...,G, of T tasks

g Cc{1,...,T}
g/ﬂg//:@ifl#/l
ubg=1{1,..., T}

Features
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Optimization problem

Multi-task logistic regression: [Pong et al. (2010)] —> here extended to L groups

T L
w(G1,...,G.) = argmin Z log(1 — ye - Xwe) + /\Z [lwg, ||

w=lwawr] o =1
oc— log p(ye | Xwe) enforces structure
Trace norm || - ||t = sum of singular values = enforces low-rank

o7 = (616,

WG,=0,0w 1

%
=N

WG,=6,0w g2
@)

Features

WGs=030w 3

5 10 15 20 25 30
Tasks

Mask 0; = {0,1}7T of the /-th group

. . T
tasks-wise multiplication 6, © w = [0)1w1, 6, 2wa, ..., 0; Twr]
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Optimization problem

Multi-task logistic regression: [Pong et al. (2010)] —> here extended to L groups

T L
w(G1,...,G.) = argmin Z log(1 — y: - Xwy) + /\Z [lwg, ||

w=lwawr] o =1
oc— log p(ye | Xwe) enforces structure
Trace norm || - ||t = sum of singular values = enforces low-rank

0T =010,
WG,=0,0w 1

%
=N

WG,=6,0w g2
@)

Features

WGs=030w 3

Tasks

When the optimal groups are unknown

= find {G1,...,G1} <= learn the hyperparameter = [; ---6,] € {0,1}"**
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Disclaimer

These are motivating examples to introduce the optimization problems

In practice, it is more complex ...

See the work of practitioners:
o Gene expressions [Higuera et al., (2015)]
e Animals images [Lambert et al. (2000)]

e Brain signals [Sabbagh et al. (2019)]



Proposed Framework



Groupwise regularized optimization problem

In both examples, the prediction phase requires to solve

L
(0, 00) = argmin {£(w;0) 2 Ly, (X.w))+ 3 (0 O w) }

I=1

enforces model enforces structure
oc— log p(y|Xw)

The structure is :
e encapsulated into 6 = [0y - - - 6,]
e applied by the bilinear mapping ®

e enforced by the norms p,

Given the parameter matrix w € RP*T made of P features and T tasks
- Grouping features (1st example) 6, € {0,1}" and 3>, 6 = 1
- Grouping tasks (2nd example) 0, € {0,1} and 35, 0, = 17
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Learning the group structure 6

In many scenarios, the group structure 6 is unknown or partly known

|

Learning 6 to improve results
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Learning the group structure 6

In many scenarios, the group structure 6 is unknown or partly known

|

Learning 6 to improve results

Issue: difficult combinatorial problem
the number of possible partitions grows exponentially with the dimension
= trying them all is out of reach
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Learning the group structure 6

In many scenarios, the group structure 6 is unknown or partly known

|

Learning 6 to improve results

Issue: difficult combinatorial problem
the number of possible partitions grows exponentially with the dimension
= trying them all is out of reach

Idea: relax and optimize

indicators/masks 6 = [0 ...0/] relaxation,  probabilities 0 = [61...6.] € © simplex
0, mask of group / 0, probability to belong to group /

6, € {0,1} 01 € [0,1]
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Optimizing the probabilities 6

We would like to find the groups 6 € © such that the structured predictor
L
w(0) = argmin { L(w: 0) £ €y, (X,w)) + > pi(61© w)}
W =1

generalizes well to unseen data
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Optimizing the probabilities 6

We would like to find the groups 6 € © such that the structured predictor

w(f) = arg;,nin {L(W; 0) £ Ly, (X,w)) —|—;p/(0/ ® W)}

training error

generalizes well to unseen data

Idea: Find 6 such that w(#) minimizes the validation error £(W(8)) = £(y*™, (X*?!, W()))
= type of continuous cross-validation
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Optimizing the probabilities 6

We would like to find the groups 6 € © such that the structured predictor

w(0) = argvlflin {L(W; 0) = Ly, (X,w)) —|—Zp,(01 ® W)}

training error

generalizes well to unseen data

Idea: Find 6 such that W(6) minimizes the validation error £(W(6)) = £(y*™, (X", w(9)))
= type of continuous cross-validation

Bilevel Problem

reneig E(w(H)) s.t. w(0) = argmin L(w; 6)
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Bilevel Framework

Exact Problem
m|n {L{ E(w( 0))}

s.t.  Ww(#) = argmin L(w; 0)

w(0) without closed form
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Bilevel Framework

Exact Problem Approximate Problem

min {U(0) 2 £(w(0))} min {t/(0) £ £(w(0))}
©)(9) chosen arbitrarily
s.t. w(#) = argmin L(w; 0) fori=0,...,k—1
w s.t. I_ W(;+1)(9) _ A(W(i)(e))
“(0) — w(0)

w(0) without closed form U™ smooth if A smooth

I

choice of A discussed next
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Bilevel Framework

Approximate Problem

min {u“)(a) 2 5(w<k>(a))}

w(®(6) chosen arbitrarily
fori=0,....,k—1

V| wi(e) = Aw(0)
w(0) — Ww(6)
UY smooth if A smooth
6(®) chosen arbitrarily
forn=0,1,...
w(©)(0(M) chosen arbitrarily
fori=0,...,k—1 (inner algorithm)

| w0y = A(w (o))
0(1+1) = Projg (80 — VUK (8(M))  where U (H(M) = g(w(K) ("))
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Algorithmic Solution



Group Lasso solver A

Optimization problem

L
o1 2
minimjze EH}’—XWH2 + Ao wl:

=1

f(w) differentiable  g(Agw) non differentiable

where Ag:w eRP = (610w, ...,0, ©w) e RPXE
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Group Lasso solver A

Optimization problem

L
o1 2
minimjze §H}/—XWH2 + A low|:

=1

F(w) differentiable  g(Agw) non differentiable
where Ag:w eRP = (610w, ...,0, ©w) e RPXE
Forward-backward algorithm [Combettes and Wajs (2005)]
fori=0,...,k—1
| WD) = prox,.s, (w(60) — 5V (w(0)))

proximity operator (prox) 7 — see next slide
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Proximity operator

In the 1960s, [Moreau (1962)] proposed an extension of the notion of projection operator to
any convex function h, leading to the so-called proximity operator

1
Proj.(v) = argmin = |w — v||3
wel 2

0 ifwecC

1 2
= argmin ic(w) + =||lw — v where 1c(w) =
& e(w) 2” Iz e(w) {—i—oo otherwise

weRP

1
prox,(v) = argmin h(w) + =|lw — v||3
weRFP 2
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Group Lasso solver A

Optimization problem

L
s 1 2
Sy — X A 0
minimize Slly = Xwllz + > 116/ © wllz

I=1

f(w) differentiable  g(Agw) non differentiable
where Ag : WGRPH(91@W,...,9L®W) € RP*t
Forward-backward algorithm [Combettes and Wajs (2005)]

fori=0,...,k—1
| WD) = prox s, (w(0) — 5V (w(0)))

generalization of projected gradient descent
projection — proximity operator
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Group Lasso solver A

Optimization problem

L
s 1 2
Sy — X A 0
minimize Slly = Xwllz + > 116/ © wllz

I=1

f(w) differentiable  g(Agw) non differentiable
where Ag : WGRPH(91@W,...,9L®W) € RP*t
Forward-backward algorithm [Combettes and Wajs (2005)]

fori=0,...,k—1
| WD) = prox s, (w(0) — 5V (w(0)))

generalization of projected gradient descent
projection — proximity operator

ProXg,on, (v) = argmin Sg(Agw) + 3[lw — v[|3 A without closed form
weRP
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Duality in convex optimization

The ideas of duality and transforms are ubiquitous in mathematics
- Harmonics analysis — Fourier transform
- Convex analysis — Fenchel conjugate: h"(x) = sup,, (w,x) — h(w)

[Rockafellar (1970)]

0 iffxl2<1

Example: h: w — ||w = h*: x> Xx) =
P wllz 5(x) {—l—oo otherwise
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Duality in convex optimization

The ideas of duality and transforms are ubiquitous in mathematics
- Harmonics analysis — Fourier transform
- Convex analysis — Fenchel conjugate: h"(x) = sup,, (w,x) — h(w)

[Rockafellar (1970)]

0 if |x]l2 < A

Example: h: w — \||w = h":x—2 x) =
P wllz 5 (x) {—l—oo otherwise
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Duality in convex optimization

The ideas of duality and transforms are ubiquitous in mathematics
- Harmonics analysis — Fourier transform
- Convex analysis — Fenchel conjugate: h*(x) = sup,, (w, x) — h(w)

[Rockafellar (1970)]

Primal problem — Dual problem
minimize f(w) + g(Aow) minimize f*(—Aj u) + g*(uv)
weRP uERPXL
Ag: RP — RPXL Ad  RPXL 4 RP
glva...v) = Z,L:1 M|z g (ur...u) = Z;_:l (v (ur)
—— 7,_/
norm indicator

dual norm ball
Link
w = VFf*(—Aj u)

proxg,,, without closed form = solve dual problem to move Ay in smooth part
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Group Lasso solver A: dual approach

Dual problem
. T
minimize f(=Agu)+ g (v)
UERPXL
differentiable non differentiable

Dual forward-backward algorithm
fori=0,... k—1
{ u(i+1)(0) = Proxg, (u(i)(ﬁ) + ﬁAgi*(—A;;r u(i)(H)))
w(0) = VF (—=A;u(0))  (link)

24/ 36



Group Lasso solver A: dual approach

Dual problem
minimize f*(—Agu) + g (u)
N———

uecRPXL
differentiable non differentiable

Dual forward-backward algorithm
fori=0,...,k—1
{ u(i+1)(0) = Proxg, (u(i)(ﬁ) + ﬁAgi*(—A;r u(i)(ﬁ)))
K9y = Vi (—A;u(0)  (link)

where the proximal operator reads:

Proxgg. (v) = argmin fg”(u) + *HU —v|?
u€RP

1 2
—argmm,BZzB o (un) §||U— v]|
ucRPXL

= PrOJB()\)L(V) A\ not differentiable
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Reminder: why differentiability is important

60 chosen arbitrarily

forn=0,1,...
w(®(6(M) chosen arbitrarily
fori=0,...,k—1 (inner algorithm = dual forward-backward)

| w0y = A(w(6())
6+1) = Proje (0" — VUM (6())  where 49 (6()) = £(w((6(")))

We want a differentiable dual forward-backward algorithm
because it inside a bilevel algorithm !
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Group Lasso solver A: dual approach

Dual forward-backward algorithm
fori=0,...,k—1
| u0D(0) = proxy,- ( u(0) + BAVF(—AF u(0))
w(0) = V(= Agu¥(9)).

where

proxis,« (+) = argmin fg” (u) + o= f?

= argmln,@g (u) + f||u|| — (u, v) + cst
u€RP
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Group Lasso solver A: dual approach

Dual forward-backward algorithm
fori=0,...,k—1
| a0 D(0) = proxs,- ( u(0) + BANVF (—AT u(0))
w(0) = V(= Agu¥(9)).

where

o« 1
prox g, (v) = argmin fg*(u) + §Hu||2 —(u, v) + cst

ueRPXL
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Group Lasso solver A: dual approach

Dual forward-backward algorithm with Bregman distances [Bauschke et al. (2016)]
fori=0,...,k—1
[ ul™(0) = prox} . (VO (ul)(0)) + BAVF*(—Ag u(6)))
w(0) = V(= Agu¥(9)).

where the Bregman proximal operator associated to ¢ :

prox?;g*(v) = argmin Bg*(u) + ®(u) — (u,v)

ueRPXL
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Choice of ® to smooth the updates

Dual forward-backward algorithm with Bregman distances

fori=0,...,k—1
| a0 (0) = prox?, . (Vo(u(0)) + BAVF* (—AF u(0)))
w(0) = V(= Agu¥(9)).

where

proxgg*(v) = argmin Bg*(u) + ®(u) — (u,v)

ueRPXL
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Choice of ® to smooth the updates

Dual forward-backward algorithm with Bregman distances
fori=0,...,k—1
| a0 (0) = prox?, . (Vo(u(0)) + BAVF* (—AF u(0)))
w(0) = VF* (—Asu(0)).
where
L

proxgg*(v) = argminZzB()\)(ul) + &(u) — (u, v)

UERPXL -1
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Choice of ® to smooth the updates

Dual forward-backward algorithm with Bregman distances
fori=0,...,k—1
| a0 (0) = prox?, . (Vo(u(0)) + BAVF* (—AF u(0)))
w(0) = VF* (—Asu(0)).
where
L

prong*(v) = argminz (v (ur) + d(ur) — (ur, vi))

UERPXL -1

for d(u) = Z,Lzl @ (ur)
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Choice of ® to smooth the updates

Dual forward-backward algorithm with Bregman distances
fori=0,...,k—1
| a0 (0) = prox?, . (Vo(u(0)) + BAVF* (—AF u(0)))
w(0) = VF* (—Asu(0)).
where
L

proxg,. (v) = argminz (zB(A)(ul) — VA2 —||u]|? = (w, V/>)

uE]RPXL -1

for ¢(u) = —/N2 — lu]? = dom ¢ = B(\)

= 130 () always equal to 0 !

A\ trick for a differentiable algorithm
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Choice of ® to smooth the updates

Dual forward-backward algorithm with Bregman distances
fori=0,...,k—1
| a0 (0) = prox?, . (Vo(u(0)) + BAVF* (—AF u(0)))
w(0) = V(= Agu¥(9)).

prox¢ (v) < Avy )
P “\ Ao
g 1+ ||V/||§ I=1,...,L

-

where

—gf =B, —Usual prox_‘;. =Pa,
—7Usual & = %H -7 ——Proposed proxg.

—Proposed ® = —\/X2 — |- [+ X +A

-A +A -A +A
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Convergence Guarantees

Convergence w(k)(0) — w(6)

Const

Theorem 1: For every 0 € ©, ||[w¥(0) — w(0)|? < ;

Convergence "UK)(0) — U(0)"

Theorem 2: Assume that © is a non-empty compact subset of RiXL. If the iterates
{w(0)}ken converge to W(0) uniformly in © when k — o0, then

inf %) (0 inf U(6 d in U%(0 i 9
JEHT) S5 abue) andanemin UEO) 23, ipman W)

ue) =

Reminder : {u“)(e) _
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Numerical Experiments



Setting

Setting: T = 500 tasks, N = 25 noisy observations, P = 50 parameters.

Goal: Estimate and group the parameters

Oracle w* w} Oracle 6* = [0} - - - 0]
5

10 l l 10
0 0
£ 20 £ 20
3 3
E 0 E
& 30 & 30

40 40

50 -5 50

123456728910 1 2 3 4 5
Tasks Groups

ye = Xew] + e where e ~ N(0,0 =0.1)
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Result

Features
N}
S

w
S

IS
S

50

Iterate 0

1 2 3 4
Group indices

N EIRENE) E]II

Recover the correct groups ! (just different ordering)

Oracle 0* = [0} - - - 07]

Features
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S &6 o o

o
o
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When the number of groups is unknown

Estimate 0 Oracle 0* = [0} - - - 07]
10 10
£ 20 € 20
& 30 & 30
40 40
50 50
12 3 45 6 7 8 910 1 2 3 4 5
Groups Groups

Works even when the number of groups is unknown !
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Conclusion



Conclusion

1. Define structured predictor with groups ¢

w(0) = argmin L(w; 0)

2. Ideal: find groups 6 such that w(#) minimizes the validation error

g’neig E(w(H)) s.t. w(0) = argmin L£(w; 0)

3. Practice: solve a differentiable bilevel problem

w(®(0) chosen arbitrarily
min E(w(0) st fori=0.... k-1
- [ wl(0) = A(w(9)) with A differentiable
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What is next

1. More complex structures (overlapping, hierarchical, ...)
2. New multi-task models to transfer learning

3. Theoretical guarantees for bilevel optimization (global minima, convergence rate, ...)
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What is next (theoretical guarantees)

Exact problem Approximate problem

min {u(e) 5(.»(0))} min {u“)(e) 2 5(W(k>(9))}

©)(9) chosen arbitrarily
fori=0,...,k—1
s.t. Ww(0) = argmin L(w; 0) s-t. | w*D(9) = A(w(0))

o w((0) — w(8)

p(nt1) — Proje(é(") _ Nvu(k)(g(")))

. (k) . V
¢ |nf U kS ro0 06 |nf U e Impact of warm-restart on w(® ?
e argmin U()\) e argmm UA) V" e limpoo VUY() € DU(H) ?

0€o

li n 000(") c au—l 0) ?
e Efficient computation of Vu(k) N o lim,_, (0)

.



Numerical Experiments

Reminder : [w{"(6)- - W-(,—k)(e)] = [W1(0) - - - wr ()]

\-e-oracle GL =%~ Lasso =7-Proposed method\ \-e-GL = Lasso -(-BiGL -V-BiGLThr\
10 5
= g
5] _ L " 5]
c 8 < g
2 T~ 5
T oo E-g-=- g
= 6 h7
= T &
50 500 5000 10" 102 10°
Inner iterations K Number of tasks T'

(GL) group Lasso with oracle groups
(Lasso) Lasso
(BiGL) proposed method
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Convergence of the upper iterates

Convergence to a stationary point

Theorem 3: For i uniformly sampled in {1,..., Nmax}:

)

A Const
E[lG (07 < ===

where G, with step-size

6,(0) = = (0~ Po(0 = yvU™(0)

Intuition : Without the projection, G, () = Vi/¥(0)
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Hypergradient Computation

© ) e H
fori=0,...,k—1

{ (i+1)(9) = A(u (i)(g) 0) (1)
wl(0) = B(u(0),0),
we get
“(0) = (u")(6) " 0uB(u™(0),0) TV C(W(0)) + 0:B(u™(6),0) "V C(wh(0)).
)
Moreover, using the updating rule for u'”(0) in (1) we have
(@"Y(0) = 01 A (0), 0)(u?) (0) + 2A(u"(6), 0). ©)
Setting A (0) = 9. A(u(6),0) and AY(6) = D2.A(u?(6),0), we have
@ YO = @O A @) +AV6)" (4)

a6



Hypergradient Computation

Then, by combining the two equations above we have

VU (9) = (u®Y (0) T B(u(6),0) " V(W () + 9.8(u(6),0) "V C(w¥(6))
= (YO TATVO) 9B (0),0) V(I (0)

aQ
+ AYD0)T 0, B(u™(6),0)" v C(w(0)) + 9.8(u™(6),6)T v C(w(0))
ay by
= (W )(0)" ALTV(0) 2+ A TV(0) ok + b
a1 b —1
= (W )(0)" ALD(0) a1+ ALTD(0) k1 + be s
a2 by 2

where in the last line we used that u(®)(0) is constant.

s/6



Comparison with state-of-the-art

State-of-the-art: joint optimization [Kang et al. (2011), Kshirsagar et al. (2017).]

(W, ) = argmin {ﬁ(W;H) 2 Uy, (X,w)) + Zp,(@; ® W)}

w,0€0 =1

issues: some trivial undesired minima
unclear interpretation of the solution

Proposed method: bilevel optimization [Frecon et al. (2018), Frecon et al. (2020).]

gneig E(w(0)) s.t. w(h) = argvlglin L(w;0)

idea: find 6 such that Ww(6) generalizes well to unseen data
— choose £ as the validation error
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