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Abstract

This work frames the learning of multiple adversar-
ial perturbations as a sparse dictionary learning prob-
lem bridging the gap between specific and universal
attacks. On the one hand, this framework allows to
build an adversary attack to new examples by only
learning the coding vectors, provided that the dic-
tionary is known. On the other hand, the a poste-
riori study of the atoms unveils the most common
patterns to attack the classifier. Numerical experi-
ments conducted on CIFAR-10 illustrate that our ap-
proach, termed as Sparse Coding of ADversarial At-
tacks (SCADA), achieves higher fooling rates of the
deep model than state-of-the-art attacks for smaller ad-
versarial perturbations.
Keywords: adversarial; sparse coding.

1 Introduction

With recent technological advances, the use of deep
neural networks (DNN) have widespread to numerous
applications ranging from biomedical imaging [MLY17]
to the design of autonomous vehicles [BACM19]. The
reasons of their prosperity strongly rely on the increas-
ingly large datasets becoming available, their high ex-
pressiveness and their empirical successes in various
tasks (e.g. computer vision [AM18], natural language
processing [YHPC18] or speech recognition [DHK13]).

However, their high representation power is also
a weakness that some adversary might exploit to
craft adversarial attacks which could potentially lead
the DNN model to take unwanted actions [SZS+14,
FBI+19]. More precisely, adversarial attacks are al-
most imperceptible transformations aiming to modify
an example well classified by a DNN into a new exam-
ple, called adversarial, which is itself wrongly classified.

To date, various more or less heuristic attacks have
been developed. The majority of them are perturba-
tions which, added to the original image, will change
few pixels. In this regard, the most popular are the
fast gradient sign method (FGSM) [GSS15, KGB17],
DeepFool [MFF16], the projected gradient method
(PGD) [MMS+19] or the approach of Carlini and Wag-
ner (CW) [CW17] which relies on the minimization of
the perturbation’s `p-norm. More recently, a functional
attack, called ReColorAV, has been devised in [LF19]
and intends to learn a perturbation function while ap-
plied to the input produces an adversarial example. A
peculiarity of all these attacks is that they are specific,
meaning that they are intended to modify a single ex-
ample. A contrario, in [MDFFF17] the authors devised
a universal perturbation, coined UAP, that can be ap-
plied to a whole set of images. However, although it
is universal, it is difficult to interpret precisely why it
works in a case to case basis. More generally, state-of-
the-art attacks still suffer from a lack of interpretabil-
ity.

This contribution aims to bridge the gap between
specific and universal attacks through adversarial
dictionary learning by allowing each individual attack
to be written as a linear combination of a few shared
dictionary elements. The proposed framework is intro-
duced in Section 2 while a corresponding algorithmic
solution is devised in Section 3. Numerical experi-
ments are conducted in Section 4 where the dataset
CIFAR-10 has been used as a challenging reference
point of evaluation for the proposed algorithm.

Notations. Let X be a Hilbert space and Γ0(X ) be
the set of proper lower semicontinuous convex functions
from X to ]−∞,+∞]. We let ıC denotes the indicator
function of the set C ⊆ X , i.e., ıC(x) = 0 if x ∈ C and
+∞ otherwise. The proximity operator of h ∈ Γ0(X )
reads proxh : u ∈ X 7→ argminv∈X

1
2‖u− v‖

2 + h(v).
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2 Learning dictionary of attacks

In this section, we introduce the proposed framework
for learning a dictionary of attacks.

Without loss of generality, we focus on adversary
examples aiming to fool a classifier in the form of a
generic neural network f with c ∈ N+ output nodes
and taking an image x as input. Hence, for every image
x ∈ [0, 1]P made of P pixels, f(x) ∈ Rc. The predicted
label for x by the classifier f is then defined as the
maximizer Cf (x) = argmaxk=1,...,c fk(x). The goal of
adversarial learning is to find an example x′ close to x
so that the predicted labels are different, i.e., Cf (x′) 6=
Cf (x). Here, we restrict to adversary examples written
as additive perturbations of valid examples. In this
setting, the goal is to find a small perturbation ε such
that x′ = x+ ε is an adversary example.

The originality of the proposed method is to find a
perturbation ε expressed as a linear combination of a
few attacks. More formally, let µ be a distribution of
images on [0, 1]P . We aim to learn a dictionary of at-
tacks D ∈ RP×M , made of M � P atoms, so that
for every xi ∼ µ, xi + εi, with εi = Dvi, is an ad-
versary example for some sparse vector vi ∈ RM . To
do so, we propose to address the following optimiza-
tion problem reminiscent of classical dictionary learn-
ing problems (see, e.g., [MPS+09, Rak13]).

Problem 2.1 (Adversarial dictionary learning). Let a
classifier f : RP → Rc and a dataset {xi, ti}Ni=1 made of
N ∈ N+ samples where each xi ∈ RP is a valid instance
and ti ∈ R is an adversary target chosen amongst the
c classes so that ti 6= Cf (xi). Solve

minimize
D∈C

V=[v1···vN ]∈RM×N

N∑
i=1

`i(D, vi), (1)

where C = {D ∈ RP×M | (∀m ∈ {1, . . . ,M}), ‖dm‖2 ≤
1} encodes some bounding constraints on D and where
the cost associated to each adversary attack reads

`i(D, vi) = λ1‖vi‖1 + λ2‖Dvi‖22 +H(f(xi +Dvi), ti).

H represents the cross-entropy loss while λ1, λ2 > 0
are regularization parameters.

The first term in the cost `i(D, vi) enforces vi to be
sparse through the use of the `1-norm. As a result, only
a few atoms of D are chosen to build the perturbation
Dvi. The second term favors an adversary example xi+
Dvi close to xi with respect to the `2-norm. The third
term measures the cross-entropy between the output
of the classifier fed with the adversary example and

the adversary target. It plays a central role since it
quantifies the closeness between the predicted target
and the adversary target.

3 Algorithmic solution

Herein we propose a procedure for solving Problem 2.1.
Minimizing the objective in (1) is a challenge due to

the nonconvexity inherent to the dictionary learning
formulation and the neural network f . We stress out
that we are only interested in finding a good station-
ary point in a limited time. Although classical dictio-
nary learning problems are nonconvex, they are usu-
ally solved by alternating the optimization over D and
V since each alternating problem is convex. However,
here this no longer the case because of the added term
promoting adversarial examples. Hence, we embrace a
direct optimization scheme over (D,V ) in the spirit of
the nonconvex proximal splitting framework of [Sra12]
which has also been applied in the context of classi-
cal dictionary learning in [Rak13]. To that purpose,
we begin by recasting the objective in Problem 2.1 as
follows.

minimize
D∈RP×M

V ∈RM×N

L(D,V ) ,
{
F (D,V ) + Ω(D,V )

}
, (2)

with{
F (D,V ) =

∑N
i=1 λ2‖Dvi‖22 +H

(
f(xi +Dvi), ti

)
,

Ω(D,V ) = ıC(D) +
∑N
i=1 λ1‖vi‖1,

where F is smooth, provided that f is smooth as well,
and Ω ∈ Γ0(RP×M × RM×N ) is nonsmooth. We also
make the assumption that ∇F is Lipschitz continu-
ous. The existence of the Lipschitz constant plays a
central role for ensuring convergence guarantees of the
algorithm. Note that studying the Lipschitz regularity
of neural networks is difficult [SV18]. Here, we pro-
mote the linesearch based proximal-gradient method
of [BLP+17]. For the ease of reading, in what follows
we only focus on the proximal-gradient step. Given
some sequence of step-sizes {γk}k∈N, each step amounts
in finding

(D(k+1/2), V (k+1/2)) = argmin
D∈RP×M ,V ∈RM×N

h(k)(D,V ),

where

h(k)(D,V ) = Ω(D,V )− Ω(D(k), V (k))

+∇DF (D(k), V (k))>(D −D(k)) + γ−1
k ‖D −D

(k)‖2/2
+∇V F (D(k), V (k))>(V − V (k)) + γ−1

k ‖V − V
(k)‖2/2.

2



Algorithm 1 SCADA

Require: Parameter δ ∈]0, 1[
Set D(0) ∼ N (0P×M , 1P×M ) and V (0) = 0M×N
for k = 0 to K − 1 do

Provide rough estimate of γk > 0
Proximal-gradient step
D(k+1/2) = ProjC(D

(k) − γk∇DF (D(k), V (k)))
V (k+1/2) = Softγkλ1

(V (k) − γk∇V F (D(k), V (k)))
Compute the difference

d
(k)
D = D(k+1/2) −D(k) & d

(k)
V = V (k+1/2) − V (k)

Armijo-like backtracking loop
ik = 0 and hk = h(k)(D(k+1/2), V (k+1/2))
repeat

D̃(k) = D(k) + δikd
(k)
D & Ṽ (k) = V (k) + δikd

(k)
V

ik = ik + 1
until L(D̃(k), Ṽ (k)) ≤ L(D(k), V (k)) + δikhk
D(k+1) = D̃(k) and V (k+1) = Ṽ (k)

end for
return Dictionary D(K), coding vector V (K)

The overall step can be recast as(
D(k+1/2)

V (k+1/2)

)
= proxγkΩ

((
D(k)

V (k)

)
− γk∇F (D(k), V (k))

)
where the gradient is computed jointly over D and V .
Note that since Ω is separable, it yields that

proxγkΩ(D,V ) =
(

proxıC (D),proxγkλ1‖·‖1(V )
)
,

= (ProjC(D),Softγkλ1
(V )) ,

where Softγkλ1
(V ) is the soft-thresholding operator

[DDDM04]. The full scheme is sketched in Algorithm 1
while convergence guarantees are provided below.

Theorem 3.1 (Convergence [BLP+17]). Let
{D(k), V (k)}k∈N be the sequence of Algorithm 1.
Then each limit point of {D(k), V (k)}k∈N is a sta-
tionary point of Problem 2.1 and {L(D(k), V (k))}k∈N
converges towards the objective value at the limit point.
In addition, if L satisfies the Kurdyka- Lojasiewicz
(K L) property at any point, then the sequence
converges to a stationary point of Problem 2.1.

Remark 3.1. Many functions met in neural networks
are semi-algebraic or tame, and therefore satisfy the
K L property (see, e.g., [ABS11, ZLLY19]). Since these
“concepts” are stable under many operations, it is rea-
sonable to assume that many DNN f are likely to sat-
isfy the K L property and so does L.

Once the dictionary is learned, one can attack a new
example x ∼ µ by solely learning the coding vector v.

This amounts in solving (2) for fixed D through Algo-
rithm 1 where the optimization steps over D have been
omitted. In order to make sure that the adversarial ex-
ample x′ is a valid image, we additionally perform the
projection x′ = Proj[0,1]P

(
x+Dv(K)

)
.

4 Numerical experiments

In this section, the proposed approach, coined SCADA
for Sparse Coding of ADversarial Attacks, is evaluated
on numerical experiments.

Setting. The purpose of this experiment is to attack
a LeNet [LBBH98] model f trained on the CIFAR-10
dataset and achieving a test accuracy of 62.8%. Al-
though f is not smooth, we still apply our framework
since it is unlikely that one lies at a discontinuity point
during testing. To this regard, the dictionary D (with
M = 8 atoms) is learned using a first subset T1 made
of N = 128 images sampled from the test set. The ad-
versary targets {ti}Ni=1 are chosen as the second most
probable targets predicted by f . Then, a second sub-
set T2 of 128 images is sampled from the test set in
order to evaluate to what extent D is relevant to craft
attacks to unseen examples x from T2. More precisely,
T2 is used to learn coding vectors v so that x + Dv is
an adversarial example.

Illustration. For (λ1, λ2) = (10−1, 10−1) the training
loss is reported in Figure 3 (left) whereas the learned
adversarial dictionary is illustrated in Figure 1. In-
terestingly, we observe that the atoms are not purely
random but unveil spatial patterns. Preliminary exper-
iments, not reported here, suggest that these patterns
not only depend on the dataset on which the model f
has been trained but also on its architecture. Hence,
the atoms of D highlight the most common flaws to fool
f on CIFAR-10 images. We additionally report two
SCADA attacks in Figure 2. As expected, the pertur-
bation needed to attack each image only involves a few
dictionary atoms. Using the proposed approach, one
can understand the semantic used to fool the model.
For instance, in the top example, the original image is
attacked by a perturbation adding red and subtract-
ing green to the bottom right area which happens to
contains the frog. Learning D using the Pytorch im-
plementation on a MacBook Pro 2,3 GHz Intel Core
i9 with 8 cores required about 0.524 seconds per iter-
ation. Once the dictionary D is learned, an attack is
produced in 1.5 seconds.
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Figure 1: Dictionary of attacks for LeNet trained on CIFAR-10. Atoms are represented from left to right while
their positive and negative parts are represented at the top and bottom, respectively. All atoms have been
rescaled for display purposes.

Figure 2: Two examples of proposed attacks. Top: v =
[0, 0.6269, 0, 0, 0, 0, 0,−0.7819] and t=Deer. Bottom:
v = [0, 0.3351,−0.5497, 0.021, 0, 0, 0, 0]) and t=Dog.

Impact of regularization parameters. Since the
choice of (λ1, λ2) strongly affects the estimated at-
tacks, we have examined their impacts by tuning them
in {10−3, 10−2, 10−1, 1}. The quality of the attacks
is measured in terms of relative mean square error

(rMSE), defined as (1/|T2|)
∑|T2|
i=1 ‖Dvi‖2/‖xi‖2, and

fooling rate. The former metric measures the propor-
tion of noise added to the adversarial example while
the latter metric is the percentage of adversarial ex-
amples fooling the classifier. Results, illustrated in
Figure 3 (right), support that increasing λ1 and de-
creasing λ2 permit to increase the fooling rate at the
cost of a higher rMSE. A good compromise is attained
for (λ1, λ2) = (10−1, 10−3).

Comparisons with state-of-the-art. The same ex-
periment is conducted for state-of-the-art attacks. Re-
sults, reported in Figure 3 (right), highlight two ex-
tremes. On the one hand, specific attacks (FGSM,
PGD and DeepFool) achieve a small rMSE but fail to
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Figure 3: Left: training loss wrt iterations. Right:
comparison against state-of-the-art attacks.

often fool the classifier. On the other hand, the univer-
sal attack UAP benefits from a higher fooling rate at
the price of a high rMSE. By comparison, the proposed
SCADA offers a good trade-off between the two ends of
the spectrum. It is worth mentioning that, by varying
the number M of atoms, one could join the two ends.

5 Conclusion

The present paper introduced SCADA, a dictionary
learning framework for finding adversarial perturba-
tions in the form of a sparse linear combination of
shared dictionary elements. Once the dictionary is
learned, it allows to craft an adversary perturbation to
a new image by solely learning a few linear coefficients.
Numerical experiments showed that SCADA offers a
better trade-off between fooling rate and rMSE than
state-of-the-art approaches while also benefiting from
more interpretable attacks. Future works include an
in-depth study for various dictionary constraints and
neural network architectures, along with the design of
a solver taking full advantage of the finite-sum nature
of the optimization problem.
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