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Abstract
We present a continuous bilevel optimization
problem for inferring the Group Lasso struc-
ture. It relies on an approximation where the
lower level problem is replaced by a smooth
dual forward-backward scheme with Bregman
distances. Theoretical guarantees regarding its
convergence to the exact problem are also pro-
vided.

1. Introduction
Many classes of datasets have shown to exhibit a sparse
representation when expressed as a linear combination of
suitable dictionary elements. This has led over the past
decades to the development of sparsity inducing norms and
regularizers to unveil structure in the data. But there might
also be a rich structure beyond the sparsity patterns, which
is widely referred to as structured sparsity (Jenatton et al.,
2011; Micchelli et al., 2013). In that sense, a lot of work
has been devoted to encode a priori structure of the data in
possibly overlapping groups (Jacob et al., 2009).

In the present paper, we restrict our study to the popular
Group Lasso problem (Yuan & Lin, 2006). Given an ob-
servation y 2 RN and a regression matrix D 2 RN⇥P , the
Group Lasso problem amounts in finding
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However, in many applications, we might have a large num-
ber of features whose group-structure {G
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be (partially) unknown. In addition, L itself might not be
known. Nonetheless, the prior knowledge of the groups is
crucial as it would lead to a lower prediction error (Lounici
et al., 2011). To the best of our knowledge, only a few
approaches have been devoted to inferring the groups under
some hypothesis (Hernández-Lobato & Hernández-Lobato,
2013; Shervashidze & Bach, 2015).

Contributions and outline. The main novelties of this
paper rely on i) the formulation of the problem of infer-
ring groups as a continuous bilevel optimization problem
and ii) a sound approximation scheme. This contribution
is presented in Section 2. Moreover, iii) a new algorith-
mic solution based on an upper stochastic gradient descent
and a lower dual forward-backward scheme with Bregman
distances is devised in Section 3. The well-behavior and per-
formance of the proposed approach are assessed on synthetic
data in Section 4. Finally, conclusions and perspectives are
drawn in Section 5.

Notations. Let X be an Euclidian space. �
0

(X ) denotes
the space of functions h : X ! ]�1,+1] closed, proper
and convex. We also denote by argminh the set of mini-
mizers of h or the minimizer of h when it is unique.

2. Proposed bilevel problem
2.1. Original problem

We tackle the problem of learning the groups by means of a
bilevel multi-task learning problem, where the tasks are sup-
posed to share a common group structure. In addition, we
encapsulate the group structure by means of an hyperparam-
eter ✓ 2 {0, 1}P⇥L, defining at most L groups, such that
(8l 2 {1, . . . , L}, 8p 2 {1, . . . , P}), ✓

l,p

= 1 if the p-th
feature belongs to the l-th group, and 0 otherwise. In order
to select ✓, we consider the following continuous relaxation

Problem 2.1 (Exact bilevel problem). Let C : x =
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smooth. Given some observations y

t

2 RN and regres-
sion matrices D

t

2 RN⇥P for t 2 {1, . . . , T}, as well as
some regularization parameters � > 0 and ✏ > 0, solve

minimize

✓2⇥
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(

x̂(✓) = argmin
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L(x, ✓),
U(✓) = C(x̂(✓)),

(2)
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The penalty term (✏/(2T ))
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, for some ✏ > 0,
has been added in order to ensure strong convexity of L. A
typical choice for C

t

is the validation error C
t

(x̂

t
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t
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t

(✓)k2 for which the selection of ✓ is
motivated by the need of generalizing well to unseen data.

The following result concerns with the existence of solution
of Problem 2.1 whose proof is given in the appendix.
Proposition 2.1 (Existence of solutions). Assume that ⇥
is a compact nonempty set of RP⇥L

+

, then ✓ 7! x̂(✓) is
continuous. Suppose in addition that C is a continuous
function. Then Problem 2.1 admits solutions.

2.2. Approximate problem

Usually, we don’t have a closed form expression for x̂(✓) but
we rather have an iterative mapping converging to x̂(✓) that
we arbitrary stop after Q iterations. Henceforth, we actually
solve an approximate problem of the following form.
Problem 2.2 (Approximate bilevel problem). Let C and
⇥ be as in Problem 2.1. Given two mappings A and B, as
well as a maximum number of inner iterations Q 2 N, solve

minimize
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U
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The following theorem gives the conditions under which
the approximate problem converges to the exact one as the
number of inner iterations Q grows.
Theorem 2.1 (Convergence of the approximate problem).
In addition to the assumptions of Problem 2.2, suppose that
the iterates {x(Q)

(✓)}
Q2N converge to x̂(✓) uniformly on ⇥

as Q ! +1. Then the approximate Problem 2.2 converges
to the exact Problem 2.1 in the following sense
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where the latter convergence is meant as set convergence
(see appendix for details).

Theorem 2.1 justifies the minimization of U
Q

(for suffi-
ciently large Q) instead of U . Concerning the lower level
problem in (2)-(3), since it is nonsmooth, a nonsmooth
solver is usually employed, meaning that A and B in (4) are
nonsmooth. This causes U

Q

to be nonsmooth, besides being
nonconvex. In that case, minimizing U

Q

is a challenge. In-
deed, even just determining a (hyper)subgradient of U

Q

in
a stable fashion by recursively computing a subgradient of
u

(q)

(✓) might be hopeless. Therefore, we embrace the idea
proposed in (Ochs et al., 2016) to devise a smooth algorithm
by relying on Bregman proximity operators and we make
two advances. First, we propose a new algorithm based on
a dual forward-backward scheme with Bregman distances
where A and B are smooth. Second, we justify the conver-
gence of the approximate bilevel problem with such inner
Bregman scheme to the exact one by elaborating on recent
results (Bauschke et al., 2016). This approach finally gives
a smooth function U

Q

whose gradient can be recursively
computed by applying the standard chain rule (Griewank &
Walther, 2008).

3. Algorithmic solution
3.1. Principle

In order the solve Problem 2.2, we propose the following
projected gradient descent algorithm

(8k 2 {0, . . . ,K�1}), ✓(k+1)
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where P

⇥

denotes the projection onto the unit simplex ⇥

(see (Condat, 2016) for an efficient projection method on
⇥), and ⌫ > 0 is a given step-size. Overall, this procedure
requires to compute the Q-th iterate x

(Q)

(✓

(k)

) as well as
the hypergradient rU

Q
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(k)

).

3.2. Solving the lower level problem

In this section, we draw our attention to the lower level
problem in (2)-(3). Since it is separable with respect to the
tasks, without loss of generality we can deal with a single
task omitting the index t.
Problem 3.1. Given some observation y 2 RN , a regres-
sion matrix D 2 RN⇥P , regularization parameters � > 0

and ✏ > 0, as well as some group structure ✓ 2 ⇥, find

x̂(✓) = argmin
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Since the proximity operator of g�A
✓

cannot be computed in
closed form, we cannot use the standard forward-backward
algorithm (Combettes & Wajs, 2005) to solve Problem 3.1.
Therefore, we tackle its dual problem.
Problem 3.2. Find a solution û(✓) of

minimize

u2RP⇥L
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⇤
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⇤
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o
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where f
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⇤ denote the Fenchel conjugates of f and
g respectively, and where A
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,
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Note that the dual Problem 3.2 admits a solution, since
strong duality holds and the primal Problem 3.1 has a solu-
tion. Moreover it is a smooth constrained convex optimiza-
tion problem. Indeed, since f is closed and ✏-strongly con-
vex, it follows that f⇤ is everywhere differentiable with ✏

�1-
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2
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of RP centered at zero and of radius �.

We propose to solve Problem 3.1 by applying a forward-
backward algorithm with Bregman distances to the dual
Problem 3.2 (Bauschke et al., 2016; Van Nguyen, 2017)
and using the primal-dual link x = rf

⇤
(�A

⇤
✓

u). This
algorithm calls for a Bregman proximity operator of g

⇤

which can be made smooth with an appropriate choice of
the Bregman distance. In the following, we provide the
related details.
Definition 3.1 (Bregman proximity operator (Van Nguyen,
2017)). Let X be an Euclidean space, h 2 �

0

(X ) and let
� 2 �

0

(X ) be a Legendre function. Then, the Bregman
proximity operator (in Van Nguyen sense) of h with respect
to � is prox�

h

(v) = argmin

u2X h(u) + �(u)� hu, vi.

The dual forward-backward algorithm with Bregman dis-
tances (FBB) for Problem 3.1 is as follows. Given some
step-size � > 0 and u
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The updating rules in (9) define the mappings A and B
in Problem 2.2. In this case, the mapping B is smooth,
whereas the smoothness of A depends on the choice of
�. We consider �(u) =

P

L

l=1

�(u

l

) to make A separable.
Moreover, in order to obtain a smooth update, we resort

to the following Legendre function which handles the ball
constraint.

Definition 3.2. The separable Hellinger-like function is
defined as � : u 7!
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For such choice, the corresponding forward-backward
scheme with Bregman distance is given in Algorithm 1 (see
appendix). The following theorem addresses the conver-
gence of Algorithm 1. The proof is given in the appendix.

Theorem 3.1 (Convergence of dual FBB scheme). The se-
quence {x(Q)

(✓)}
Q2N generated by Algorithm 1 converges

to the solution x̂(✓) of Problem 3.1 uniformly on ⇥ for
any step-size 0 < � < �
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This result applies to every task of the lower level objec-
tive in Problem 2.1 and hence we have that the sequence
{x(Q)

(✓)}
Q2N, collecting all the tasks, converge uniformly

to x̂(✓) on ⇥. Therefore, the requirements of Theorem 2.1
are met and the solutions of Problems 2.2 converge to the
solutions of Problem 2.1 as Q ! +1. This provides, to
the best of our knowledge, the first theoretical justification
of the framework proposed in (Ochs et al., 2016).

3.3. Computation of the hypergradient

In this section, we discuss the computation of the (hy-
per)gradient of U

Q

. It follows from (4) that, for every
✓ 2 ⇥,
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Instead of recursively computing (u

(q)

)

0
(✓) by forward dif-

ferentiation, we implement the reverse mode (Griewank &
Walther, 2008; Franceschi et al., 2017) which aims at eval-
uating the product [(x(Q)

t

)

0
(✓)]

>rC

t

(x

(Q)

t

(✓)) itself. This
method permits to store matrices of smaller size. The details
are given in Algorithm 2 in the appendix. In addition, as
suggested in (Griewank & Walther, 2008, Chapter 15), we
implement a variant of Algorithm 2 in which all the deriva-
tives of the mapping M are evaluated at the last iterate x(Q),
z

(Q), and u

(Q) to reduce the execution time. In our experi-
ments, we observe that the hypergradient is left unchanged
by this operation as long as Q is large enough.
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Figure 1. Left: the comparison of estimation errors show that the
proposed (BiGL) and (BiGLThr) estimates yield performance
close to the oracle (GL). Right: ✓(BiGLThr) satisfactorily reflects
the oracle ✓⇤.

3.4. Implementation details

The general scheme of the proposed bilevel method is given
in Algorithm 3 in the appendix. Let us mention a few com-
ments about its implementation.

First, all operations are computed in parallel with respect
to the tasks. Second, since the hypergradient in (12) has
the form of a sum of T terms, we implement a stochas-
tic variant, by estimating the hypergradient rU

Q

on a sin-
gle task chosen at random. Finally, we initialize ✓

(0)

=

P
⇥

(L

�1

P⇥L

+n) where n ⇠ N (0

P⇥L

, 0.1L

�1

P⇥L

) in
order to be as less informative as possible regarding features
relationship while still breaking the symmetry by adding a
small perturbation.

4. Numerical experiments
In this section, we devise synthetic experiments to illustrate
and assess the performance of the proposed method.

Experimental setting. We consider the ill-posed setting
(N = 50, P = 100) where ✓

⇤ is made of L⇤
= 10 groups

equally distributed over the features. We fix T = 500

and every x

⇤
t

is set to have non-zero coefficients equal
to 1 in at most 2 groups chosen at random. All datasets
are synthesized as follow. For every t 2 {1, . . . , T},
D

t

⇠ N (0

N⇥P

,

N⇥P

) is then normalized column-wise,
and y

t

= D

t

x

⇤
t

+ n where n ⇠ N (0

N

, 0.3

N

). We set
(Q = 500, ✏ = 10

�3

, ⌫ = 0.1,K = 5 · 103) and denote the
proposed solution as ✓(BiGL). We also consider its threshold
counterpart ✓(BiGLThr) where each feature is assigned to its
most dominant group. These two solutions are compared to
✓

(Lasso)

= diag(

P

) and oracle Group Lasso ✓

(GL)

= ✓

⇤.

Illustration. First, we illustrate the well-behaviour of the
algorithmic solution, for various values of �, when L

⇤ is
known. For every �’s, U

Q

(✓

(k)

) is shown in Figure 3 (ap-
pendix) to decrease as k grows. The corresponding solutions
yield performance close to (GL) as shown by the valida-
tion, test and estimation error (see Figure 1 and appendix).
More importantly, for � which minimizes the validation
error, denoted �

min

, the estimate ✓

(BiGLThr), reported in

50 500 5000
2

4

6

8

10

12

20 60 100

2

4

6

8

10

12

20 60 100

2

4

6

8

10

12

Figure 2. Left: impact of Q on the validation error. Right: an
adequate estimation of the groups can be obtained even when the
number of groups is set to 20 instead of 10.

Figure 1 (right), satisfactorily reflects ✓⇤, thus showing that
minimizing the validation error permits to infer the groups.

Impact of Q. We propose to investigate the impact of Q on
the validation error. To do so, we repeat the same experiment
for � = �

min

and different values of Q. Once the estimates
✓

(BiGL) and ✓

(BiGLThr) are obtained, the validation errors
(where x̂(·) are computed a posteriori for 104 iterations)
are plotted as functions of Q in Figure 2 (left). Results
show that increasing Q sufficiently large permits to reach
performance close to (GL). In addition, we stress out that,
for Q � 500, the performance of (BiGL) and (BiGLThr)

become indistinguishable thus exhibiting that the algorithm
does tend to assign a single group to each feature.

Impact of T . We report in Figure 4 (appendix) the esti-
mation errors as functions of T . We observe that the per-
formance of (BiGLThr) gets closer to those of (GL) as T
grows. Hence, this confirms that inferring ✓

⇤ is intrinsically
a multi-task problem that benefits from having many tasks.

Impact of L. Whereas we have assumed L

⇤
= 10 known,

we now suggest to relax this assumption and let the algo-
rithm find at most L = 20 groups. The estimate ✓

(BiGLThr)

is displayed in Fig. 2 (right) where 7 of the 10 surplus
groups identified by the algorithm have been screened. In-
terestingly, only 3 excess groups still remain but they yield a
minor influence as they only concern few features. Overall,
✓

⇤ is still satisfactorily estimated.

5. Conclusion
This contribution studied the problem of inferring the Group
Lasso structure by solving a continuous bilevel problem.
This method falls within the framework proposed in (Ochs
et al., 2016). However, here we made progress on two fronts:
i) we replaced the lower level Group Lasso problem by a
new smooth dual forward-backward algorithm with Breg-
man distances; ii) we proved that the related approximate
bilevel problem converges to the exact bilevel Group Lasso
problem. This work paves the way to the inference of groups
in even more general settings including classification and
overlapping groups (Jacob et al., 2009).
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