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Abstract— Intrapartum fetal heart rate (FHR) constitutes a
prominent source of information for the assessment of fetal
reactions to stress events during delivery. Yet, early detection of
fetal acidosis remains a challenging signal processing task. The
originality of the present contribution are three-fold: multiscale
representations and wavelet leader based multifractal analysis
are used to quantify FHR variability ; Supervised classification
is achieved by means of Sparse-SVM that aim jointly to
achieve optimal detection performance and to select relevant
features in a multivariate setting ; Trajectories in the feature
space accounting for the evolution along time of features
while labor progresses are involved in the construction of
indices quantifying fetal health. The classification performance
permitted by this combination of tools are quantified on a
intrapartum FHR large database (' 1250 subjects) collected
at a French academic public hospital.

I. INTRODUCTION

1) Intrapartum fetal heart rate monitoring: Fetal surveil-
lance and cardiotocogram (CTG) monitoring during labor is
current clinical practice aiming to assess the health status and
well-being of the fetus. It notably helps in early detection of
fetal acidosis, an important stake with respect to subsequent
fetal and neonatal mortality and morbidity [1]. Fetal heart
rate (FHR) is mostly evaluated by obstetricians using FIGO
type guidelines, which are essentially based on 3 types of
features: baseline evolution, acceleration and deceleration
shape and occurrence rates, and variability. Suspicion of fetal
acidosis leads to a decision of operative deliveries. While
the strict use of FIGO criteria leads to a high sensitivity
(correct detection of acidotic fetuses), it also comes with
a low specificity (incorrect decision of operative delivery
for a normal fetus). Therefore, significant research efforts
gathering both medical and academic teams are devoted
to better characterizing FHR, with an aim of improving
specificity while maintaining high sensitivity (cf. e.g. [2]).

2) Related works: Beyond computerized versions of
FIGO features, intrapartum FHR has been analyzed with
a large variety of features. Linear features, computed from
spectral analysis, have been massively used (cf. e.g., [3]). A
variety of non linear features have also been tested [4], rang-
ing from entropy rates (cf. e.g., [5]) to PRSA [6]. Multiscale
representations (and multifractal analysis) computing jointly
linear and non linear features have also been shown to yield
satisfactory classification performance [7]–[9].
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Supervised classification is common practice to determine
the combination of linear and non linear features leading to
acidosis performance (cf. e.g. [2], [10], [11]). Yet, machine
learning strategies often concentrate on a single time window
before delivery and thus do not fully exploit the long term
evolution of FHR as labor progresses (see, a contrario, [8],
[12]–[14] for preliminary attempts).

3) Goals, contributions and outline: In this context, the
global goal of the present contribution is to use FHR
trajectory in a feature space to assess the fetus health
status. To that end, classical (improved and automated) FIGO
features for baseline and deceleration characterization are
complemented with wavelet leader based multifractal linear
and non linear features providing practitioners with a detailed
analysis of FHR variability. Features are defined and detailed
in Section III-A. Further, supervised classification is con-
ducted using Sparse Support Vector Machine (Sparse-SVM)
aiming jointly to define the optimal performance frontier
of the healthy domain and to perform feature selection (cf.
Section III-B). Finally, FHR trajectories in feature space are
used to quantify the fetus health status (cf. Section IV-B).
This FHR analysis strategy is illustrated at work on a large
(over 1000 subjects) database of FHR records collected in
a French public academic hospital, which is described in
Section II. Results are presented and discussed in Section IV.

II. DATABASE

1) Data: Recordings were collected at the public aca-
demic French Hospital Femme-Mère-Enfant, from 2000 to
2010, as daily routine cardiotocogram (CTG) monitoring,
using STAN S21 or S23 devices with 12-bit resolution
and 500 Hz sampling rate. The database consists of 3049
recordings together with clinical information for each woman
and neonate, systematically collected by obstetricians in
charge of delivery.

In the present study, analysis was performed on the first
stage of labor. It was required that the end of FHR in the first
stage was less than 20 minutes away from actual delivery, i.e.
to the umbilical artery pH value measurement. This led to the
selection of 1288 records, from which 37 were considered
as acidotic (pH ≤ 7.05) and 1251 as normal (pH > 7.05).

Table I reports, as an acidosis detection clinical bench-
mark, the confusion matrix corresponding to the clinicians’
decision to perform an operative delivery because of fetal
hypoxia. This clinical decision is related to pH ≤ 7.05 and
shows good specificity with yet low sensitivity.

2) Signals and analysis: From recorded fetal ECGs, the
RR intervals were extracted by the manufacturer (Neoventa
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TABLE I
ACIDOSIS DETECTION CLINICAL BENCHMARK. CLINICAL DECISION

OF OPERATIVE DELIVERY FOR SUSPECTED FETAL HYPOXIA.

SE SP #TP #FP

fetal hypoxia .49 .78 18 274

Medical, Molndal, Sweden). Traditionally, in heart rate vari-
ability analysis, RR intervals are interpolated using cubic
spline interpolation to form regularly sampled beat-per-
minute time series X(t). As FHR does not contain energy at
frequencies higher than 3 Hz, a sampling frequency of 10 Hz
was chosen. Supervised classification was conducted on the
last 20 minutes before delivery. Trajectories were obtained
from the last 120 minutes before delivery.

III. FEATURES AND CLASSIFICATION

A. Features

1) FIGO enhanced and automated features: Among the
clinical FIGO criteria, it has been chosen to assess base-
line and deceleration overall impact. The floating baseline
estimation B(t), defined and detailed in [15], [16], is com-
puted from X(t) to characterize the short-time evolution of
FHR: The local baseline within the 20-min window is then
estimated as linear regression β0 + β1B(t), whose intercept
β0 is used as first feature. The impact of decelerations is
quantified by the median absolute deviation (MAD) of FHR,
after baseline subtraction

MADdtrd =MAD(X(t)−B(t)). (1)

2) Variability from multiscale analysis: FHR variability
is considered a key element of fetal well-being evaluation
[17] and is classically quantified using the notions of long-
or short-term variabilities. In the present work, and follow-
ing our previous contributions [7], [9], [16], the concepts
of multiscale representations and multifractal analysis for
performing a refined analysis of FHR variability is used.

Multiscale analysis classically relies on wavelet coeffi-
cients, dX(j, k) = 〈ψj,k|X〉, obtained from a collection
{ψj,k(t) = 2−jψ(2−jt − k)}(j,k)∈N2 of dilated (to scale
2j) and translated (to position 2jk) templates of the mother
wavelet ψ, cf. e.g. [18]. Wavelet coefficients permit to
measure the uniform Hölder regularity hmin as [19]

supk, for fixed j |dX(j, k)| ' K2jhmin . (2)

Further, for self-similar processes, such as fractional Brow-
nian motion, commonly used to model HRV, the sample
moments (of order q > 0) display power law behaviors as
function of scale [19]

S(q, j) =
1

nj

∑nj

k=1
|dX(j, k)|2 ' Kq2

jqH , (3)

with nj the number of dX(j, k) available at scale 2j .
It is now well accepted that self-similar models and param-

eter H alone cannot fully account for the richness of scaling
encountered in real-world data and in HR notably (cf. e.g.,

[7], [20]). Multifractality enriches scaling characterization by
permitting the scaling exponents in Eq. (3) to depart from
the linear behavior in q, qH , and to be replaced by a concave
function ζ(q). However, a relevant estimation of concave
ζ(q) for all qs require the replacement of wavelet coefficients
with wavelet leaders, consisting of multiscale quantities that
better capture the fine scale fluctuations of regularity in data
by scanning all details finer than the chosen analysis scale
[19]. The wavelet leaders are defined as local suprema of
(fractionally integrated) wavelet coefficients, taken within a
narrow temporal neighborhood and for all finer scales

L
(γ)
X (j, k) := supλ′⊂3λ 2

j′γ |dX(λ′)|. (4)

with λj,k = [k2j , (k+1)2j) and 3λj,k =
⋃
m{−1,0,1} λj,k+m

[19]. The fractional integration parameter γ ≥ 0 is chosen
to ensure minimal regularity (cf. [19] and references therein
for theoretical developments on multifractal analysis).

Multifractal properties are efficiently characterized by rep-
resentations based on the log-leaders: lnL(γ)

X (j, ·)
C(γ)
p (j) ≡ Cump lnL

(γ)
X (j) ' c0p + cp ln 2

j , (5)

with the cp related to ζ(q) (and hence to the multifractal
spectrum) as ζ(q) ≡∑

p≥1 cpq
p/p !. This polynomial expan-

sion shows that the leading coefficient c1 is closely related
to H [7], [19]. c2, c3, c4 associated to the evolution along
scales of respectively the variance, skewness and kurtosis of
lnL(γ)(j), provide information beyond correlation and are
thus non linear features.

B. Supervised classification
1) Sparse Support Vector Machines: Sparse-SVM have

recently been proposed to achieve jointly state of the art
classification and feature selection (cf. e.g., [21]). Estimation
of the weights in the function, D(x) = sign(w>x+b), relies
on the replacement of the classical L2-norm regularization
by L1-norm soft regularization, leading to the following
optimization problem

(ŵ, b̂) ∈ arg min
w∈Rp, b∈R

C

N∑
i=1

max(0, 1−yi(w>xi+b))2+‖w‖1,

where y ∈ {−1, 1} is the class label (normal, acidotic status)
and C is the regularization constant controlling the trade-
off between sparsity and data fidelity, formulated with the
square hinge loss function: Small C promotes sparsity. This
is solved using a Forward-Backward Splitting Algorithm
involving proximity operators (see e.g. [22]).

Performance is quantified with the traditional measures of
sensitivity (SE), related to the number of true positive #TP ,
specificity (SP), related to the number of false positives
#FP , and the area under receiver-operation-characteristic
(ROC) curve (AUC). AUC is estimated by varying the offset
b. SP is reported for an arbitrarily targeted SE of 0.7 for
eased comparisons amongst the various classification set-
tings. Performance is estimated for regularization parameter
C ∈ 2{−10,−9,...,−4} using a classical cross validation leave-
one-minority-out scheme (in the current settings 37-fold
stratified cross-validation).
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TABLE II
UNIVARIATE PERFORMANCE.

Feature AUC SE SP #TP #FP

β0 .65 .70 .54 26 580
MADdtrd .74 .70 .60 26 496
H .72 .70 .68 26 435
hmin .69 .70 .51 26 615
c1 .72 .70 .57 26 543
c2 .62 .70 .45 26 694
c3 .54 .70 .35 26 809
c4 .56 .70 .34 26 825

For robustness, outliers are removed by replacing feature
values that fall outside the interval [Q1 − 3 · IQR,Q3 +
3 · IQR], where IQR = Q3 − Q1 and Q1 and Q3 denote
the first and third quantiles. Further, features are individually
standardized before their use in Sparse-SVM.

IV. RESULTS AND DISCUSSIONS

A. Univariate analysis

The feature vector used here reads: x =
(β0,MADdtrd, H, hmin, c1, c2, c3, c4). For the benchmark
and comparisons, univariate analysis is conducted applying
Sparse-SVM to each single independently. Table II shows
that individual use of features MADdtrd, H , or c1 provides
satisfactory AUC, above 0.7. Thus, decelerations and
variability, as measured by multiscale features, contribute
to fetal acidosis detection. Yet, individually, each feature
produces very low specificity for a targeted sensitivity (here
0.7), thus prompting for multivariate analysis.

B. Multivariate analysis and feature space trajectory

1) Sparse-SVM on last 20 min: Sparse-SVM is applied
to the last 20 minute window only. Table III reports classifi-
cation performance for different values of the regularization
parameter C, with corresponding weights in Fig. 1. They
show that, for the lowest C, the sole parameter MADdtrd is
selected, thus confirming the predominance of decelerations
in acidosis detection. They also illustrate that, as expected,
increasing C decreases sparsity and also increases perfor-
mance. Optimal performance is achieved for C = 2−8,
with features MADdtrd, H and β0 selected. Interestingly,
it indicates that the three typical patterns used in clinical
practice, decelerations, variability, and baseline are useful
jointly for acidosis detection. Also, it shows that c1 with
better univariate performance than β0, is not used in Sparse-
SVM multivariate classification, likely because of strong cor-
relation to H [19]. Fig. 2 displays feature space projections
and decision boundary (with C = 2−8) for the three best
features. It shows that the larger values of each feature are
associated with acidotic subjects, thus corresponding to local
baseline increase, deep decelerations, and low variability.

2) Trajectory in feature space: The decision boundary
(for C = 2−8) defining the healthy domain learned from the
last 20 minutes window is used to assess the evolution of
features along time. Features are computed for 120 minutes
prior to delivery in 20-minute-long windows with 5 min
overlap. For each subject i and each time window tk,

TABLE III
SPARSE SVM PERFORMANCE FOR LAST 20 MINUTES.

log2 C AUC SE SP #TP #FP

-10 0.74 0.70 0.63 26 462
-9 0.75 0.70 0.72 26 353
-8 0.78 0.70 0.75 26 315
-7 0.78 0.70 0.73 26 340
-6 0.79 0.70 0.72 26 349
-5 0.78 0.70 0.71 26 364
-4 0.78 0.70 0.70 26 376

log2(C)
−10 −9 −8 −7 −6
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Fig. 1. Weight repartition as a function of C.

distance to the decision hyperplane is computed as di(tk) =
yi(w

Txi(tk)+b) and the cumulated distance ri =
∑
t di(tk)

quantifies the amount of time spent outside the healthy
domain. Fig. 3 displays FHR trajectories in feature space
and corresponding di(tk) and ri(tk) for healthy and acidotic
subjects. It illustrates that normal fetuses spent most of
time in the healthy domain with sporadic excursion into the
acidotic domain, while acidotic subjects leave the healthy
domain at some time and then essentially remain outside.
Trajectory based performance is computed by comparing
ri(0), i.e. at the end of the trajectory, against a threshold
chosen to achieve the targeted 0.7 SE. Performance is
reported in Table IV for each different sparsity level C. It
confirms that use of the FHR time evolution yields further
significant improvement in acidosis detection, compared to
using only the last 20 minutes, with a specificity increased
to 0.77 (283 FPs) for the targeted specificity 0.70 (26 TPs).
Better performance is achieved for lower sparsity C = 2−6,
compared to C = 2−8 for the last 20-minute window,
cf. Table III. Interestingly, this involves the contribution
of nonlinear features c2 and c4 to characterize variability.
Though c2 and c4 do not show interesting univariate per-
formance, they do help in time evolution characterization:
In other words, nonlinear information in FHR, tracked over
time, contributes to the discrimination between healthy and
acidotic fetuses.

TABLE IV
SPARSE SVM PERFORMANCE FROM TRAJECTORY.

log2 C AUC SE SP #TP #FP

-10 0.76 0.70 0.70 26 370
-9 0.77 0.70 0.68 26 404
-8 0.79 0.70 0.73 26 338
-7 0.78 0.70 0.76 26 303
-6 0.78 0.70 0.77 26 283
-5 0.77 0.70 0.77 26 287
-4 0.77 0.70 0.75 26 312
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Fig. 3. Trajectories in feature space for healthy (top) and acidotic
(bottom) subjects. From left to right: FHR, feature space with decision
boundary, di(tk) and ri(tk).

V. CONCLUSIONS

The contributions of this work are three-fold: multiscale
representations and multifractal analysis for FHR variability
characterization, Sparse-SVM for joint feature selection and
good performance, and trajectories in the feature space to
assess fetal health. Our results show remarkable performance
compared to current clinical practice (cf. Tables I and IV:
SP for Sparse-SVM compares to that achieved by clinicians
while SE is increased from 0.49 to 0.70.

The notion of feature space trajectory takes advantage of
the particularities of the powerful Sparse-SVM: It not only
uses less features than classical SVM, removing redundant
information and making the notion of trajectory easier to
handle, but also constructs solutions in the primal space,
thus permitting interpretations of the relative importance of
features. Instead, the classical SVM, usually uses a nonlinear
mapping (via the kernel trick) that makes the interpretation
of involved features and trajectories much more difficult.

This study also confirms that the three important concepts
of FHR (basal heart rate, decelerations, and variability), used
in daily clinical practice, jointly contribute to fetal acidosis
detection performance. Non linear features c2 and c4 asso-
ciated to refined variability characterization also contribute
to improve classification performance when trajectories are
used.
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